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1. Introduction

Concrete structures are the most common type of

structure found in modern societies. These structures

can be greatly affected by aging and environmental

conditions. In some cases, these factors may lead to

structural failure [1]. In order to guarantee their safe

use, careful maintenance is needed. Diagnosis for de-

fects is then critical since it is a decision-making step.

One wide-spread method to test a concrete struc-

ture for defects is called hammering test (Fig. 1). This

method, consisting of an operator hitting the surface

of the structure with a hammer and assessing the

presence of defects from the perceived sound, has the

advantages of being non-destructive and not needing

heavy equipment. However, it requires a skilled op-

erator to be able to correctly analyze the sound and

given the huge population of structures in need of ex-

amination currently in service, testing them all with

this traditional method reveals to be problematic.

Various attempts to adapt the hammering test

in an automatic form have been made in order to ob-

tain a faster, reliable and objective method to find de-

fects in concrete structures. [2] and [3] were focused

in finding sound features enabling differentiation be-

tween defective and non-defective spots as well as on

the exploration of new methods to replace or aid the

human operator holding the hammer in order to get

more regular and reliable sound samples. [4], [5], [6]

and [7] were more focused on the data analysis part

of the problem and use supervised learning to cor-

rectly distinguish sounds from non-defective areas and

sounds from defective areas. These approaches have

given promising results, however their main drawback

is the necessity to train the algorithm first using a

training set. Depending on various factors, concrete

can greatly differ from one structure to another thus

choosing the adequate training set can be difficult.

In this paper, we present an approach to auto-

mated diagnosis of concrete condition using hammer-

ing based on clustering by a k-means algorithm. This

method relies on data collected on the actual tested

structure only and does not need the use of any new

equipment but a traditional hammer.

2. Irregularity quantification

2·1 Concept

The main hypothesis this method is based on is

that most of the tested structure is non-defective i.e.

Fig. 1 Hammering test conducted by a professional

the most commonly found sound on the structure, the

regular sound, can be identified as being of a non-

defective area. Therefore, if a large group of similar

sounds can be distinguished in the dataset, it can be

inferred that it is the regular sound of the structure

and a model representing the regular, non-defective

sound of that structure can be made. Simple cluster-

ing algorithms, such as k-means, can effectively ac-

complish this task. This regular model can then be

used as a reference to conduct a diagnosis of the whole

dataset.

After witnessing professional workers on the field

and interviewing them, it can be deduced that this is

subconsciously done by human operators when con-

ducting a hammering test: rather than directly recog-

nizing a sound for being either defective or not, they

hit multiple locations on the structure and access the

spot that returns a sound different than the others as

being a defective spot.

2·2 Feature vector and dissimilarity measure

Fourier spectrum is used as feature vector for a

hammering sound sample. Given a sound sample de-

fined by (x0, ..., xN−1) recorded on the structure, its

Fourier spectrum (a0, ..., aN−1) as defined in equation

(1) is obtained using Fast Fourier Transform (FFT).

aj =
N−1∑
l=0

xle
− 2πi

N jl j = 0, ..., N − 1 (1)

In order to compare sounds, a meaningful dis-

tance measure between sound samples in the Fourier

spectrum space has to be defined.

Given two Fourier spectrum a and b, respectively

defined by (a0, ..., aN−1) and (b0, ..., bN−1), the sample



Fig. 2 After selecting the first sample as seed, its
farthest sample is defined as the second seed

Pearson correlation coefficient is defined as in equa-

tion (2).

rab =

N−1∑
l=0

[(al − a)(bl − b)]√
N−1∑
l=0

(al − a)2

√
N−1∑
l=0

(bl − b)2

(2)

The sample Pearson correlation coefficient has

the advantage of providing a zero mean and unit

standard deviation normalizations. Features of the

Fourier spectrum of each sound sample used for com-

parison are only related to the general shape and am-

plitude variations are not taken into account. There-

fore, it can be considered robust towards changes of

the force applied by the human operator of the ham-

mer that induces sounds of different amplitude being

recorded.

The sample Pearson correlation coefficient ranges

in [-1,1]. Negative values signifies a negative correla-

tion, and positive values corresponds to correlation.

Values close to zero implies there is no correlation be-

tween the two samples. We can define a distance mea-

sure based on this coefficient, a correlation distance,

as in equation (3).

d(a, b) =
1− rab

2
(3)

The defined distance is ranging in [0,1], returning

small values the more the compared sounds are alike

and zero if the sounds are identical. Cases of nega-

tive correlation are located in the [0.5,1] range since

negative correlation is in our case not a similarity.

2·3 Clustering based model generation

Regarding the seeds for the k-means algorithm,

they need to be as distant as possible, in terms of

the distance as previously defined in equation (3). A

simple implementation is to choose the first sample

as a first seed and then parse the rest of the sound

Fig. 3 By calculating distances from the biggest
cluster’s centroid, irregular sample(s) can
be found

dataset to find the most distant sample, which would

be set as the second seed (Fig. 2).

K-means clustering algorithm is applied using the

correlation distance defined in equation (3) to classify

the sound dataset in two clusters. Then, the number

of samples in each cluster is counted and the biggest

one is identified as the regular cluster i.e. the clus-

ter containing non-defective samples. The centroid of

this cluster is used as a model for the regular, non-

defective sound that should be found on the structure.

2·4 Diagnosis

Each sound sample of the dataset is finally com-

pared to the model using once again the correlation-

based distance defined in equation (3) i.e. the gener-

ated regular model is used as reference to scale and

evaluate the samples. Since the model represents the

most regular sound shape in the dataset, irregulari-

ties i.e. distant sound samples can be recognized as

characteristic of defects on the structure (Fig. 3).

3. Experiments

3·1 Setup

The used setup is illustrated in Fig. 4 and exper-

iments were conducted on three concrete test blocks.

The first one without any defects (Fig. 5a) used as a

reference, the second one with an artificial crack at an

angle of 15◦(Fig. 5b), to simulate delamination that

occurs on the field, and the third one with an artificial

crack at an angle of 30◦(Fig. 5c), to simulate a deeper

delamination. For each block in Fig. 5, defective spots

are marked in red.

Each test block was hit at 196 locations once fol-

lowing a 14 by 14 square grid (marked with white

dots on the surface of the block) that covers the whole

block. The used hammer was a KTC UDHT-2 (head

diameter 16 mm, length 380 mm, weight 160 g), com-

monly used in hammering test by professionals and

sound was recorded at 44.1 kHz using a Behringer



Fig. 5 Schematic of (a) the non-defective test block, (b) the 15◦crack test block and (c) the 30◦crack test block
(lengths given in mm)

Fig. 6 Visualized distances on (a) the non-defective test block, (b) the 15◦crack test block and (c) the 30◦crack
test block

ECM8000 microphone coupled with a Roland UA-

25EX sound board and a laptop for data analysis. A

simple trigger was implemented to conduct clipping

to get each hammering sound as a single sample.

3·2 Results

FFT was applied to each sound sample for 1024

points. Due to the symmetry of the Fourier spectrum,

the feature vector of each sound sample was then re-

duced to simply 512 points.

In order to ignore sound similarities induced by

environmental noise, a simple spectrum subtraction

was used [8].

To focus on positive correlation, results are dis-

played in Fig. 6 using a color scale ranging in [0,0.4]

for a better contrast. As it can be seen, the method

correctly identifies defects (tested spots right over the

crack) as having a sound that is distant from the gen-

erated regular model.

3·3 Performance

In order to quantify the effectiveness of our

method, Receiver Operating Characteristic (ROC)

curve was computed on the previously presented de-

fective test block.

The schematic in Fig. 5 was used as ground truth:

samples collected directly above the crack were con-

sidered defectives and all the others non-defectives.

Then, different values of threshold were used to de-

termine whether a sample was defective or not based

on the previously calculated distance from the regular

model.

Cases where a non-defective sample was con-

sidered defective are called false positives and cases

where a defective sample was correctly considered de-

fective are called true positives. Plotting the true

positive rate against the false positive rate at various

threshold settings enables to create the ROC curve



Fig. 4 Experimental setup: (a) a concrete test
block, (b) a percussion hammer, (c) a micro-
phone, (d) a sound board and (e) a laptop

Fig. 7 ROC curve for the 15◦and 30◦cracks

shown in Fig. 7.

Bigger is the area under the ROC curve, better

is the method. For the 15◦and the 30◦crack block, it

was calculated at respectively 0.998 and 0.884. Both

values being very close to 1, it confirmed the high

efficiency of our proposed method during the experi-

ments.

4. Conclusion

As for now, the method described in this paper

was able to correctly detect defects up to a 30 ◦crack.

In future works, we would like to improve and fur-

ther test this method in order to detect other various

irregular states. Tests on real, natural defects on con-

crete structure are also to be conducted. For an easier

use on the field, implementing this method to be real-

time, for example by using online k-means, is under

consideration.
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