正距円筒オプティカルフローパターンを均等化した E-CNN による 全天球カメラの回転推定の精度向上

○ Kim Dabae, Pathak Sarthak, Moro Alessandro, 小松 廉, 山下 淳, 淺間 一 (東京大学)

E-CNN : Uniformization of Equirectangular Optical Flow Patterns for Accuracy Improvement of Spherical Camera Rotation Estimation

○ Dabae KIM, Sarthak PATHAK, Alessandro MORO, Ren KOMATSU, Atsushi YAMASHITA and Hajime ASAMA (The University of Tokyo)

Abstract : Spherical cameras acquire all-round information, making motion estimation effective. Convolutional Neural Network (CNN) is robust for such tasks but cannot be applied to spherical images due to their non-planarity. When spherical images are projected as planar equirectangular images, the unequal distortion results in low accuracy. In this paper, we propose a novel, distortion-resistant E-CNN, which robustly estimates spherical camera rotation.

1. 序論

未知環境の探索において,移動ロボットの運動推定は重 要な課題である.運動推定の方法として,移動ロボットに カメラを装着し,周囲環境の変動から推定を行うことは多 く用いられる.一般的なカメラを用いる場合,カメラ視野 の狭さの影響で,障害物などによっては正確な運動推定が できない可能性がある.一方,360°の視野角を持つ全天球 カメラは,一般的なカメラより広い角度の情報が取得でき, 運動推定の精度向上が期待できる.また,カメラ視野の一 部が妨げられても,周囲環境から運動推定を行い続けるこ とができる.つまり,全天球カメラは運動推定において有 効なデバイスであると言える.

カメラの運動推定を行う一般的な手法として,取得し た画像から特徴量を設計するフィーチャーベースト手法 が挙げられる¹⁾²⁾.しかし,この手法では特徴量の設計 が必要となる.また,環境によっては運動推定が失敗す る場合がある.近年,カメラの運動推定を行う手法とし て,ラーニングベースト手法が提案されている.この手 法では,大量のデータを学習させることで,環境変動にロ バストな運動推定が可能であることが示されている.その 中でも,画像に対しての畳み込みを行って特徴を抽出する CNN (Convolutional Neural Network)は,カメラの運 動推定において,環境変動に対するロバスト性を確認して いる³⁾⁴⁾⁵⁾.

全天球カメラは球面上に投影された像を画像として取 得するため、平面画像に対する2次元の畳み込みを行う CNN をそのまま用いることは困難である.そこで、全天 球カメラは球面画像の以外に、地球儀に対する世界地図の ように、球面上に投影された像を平面上に引き伸ばした正

Fig. 1: Spherical and Equirectangular Images

距円筒画像に変換することができる(Fig. 1).しかし,像 が引き伸ばされた正距円筒画像には,Fig. 1の上端と下端 のような情報の歪みが生じる.CNNを用いて全天球カメ ラの運動推定を行うとき,正距円筒画像をそのまま畳み込 むと,情報の歪みによって推定精度が低下する問題が生じ る.つまり,この歪みの問題を解決することは必須不可欠 である.

正距円筒画像を用いるときに生じる歪みを考慮すること は、全天球カメラの運動推定における精度向上に繋がる. そこで、本研究では、正距円筒画像の歪みを考慮した E-CNN (Equirectangular-Convolutional Neural Network) を提案し、全天球カメラの3自由度の回転推定を行うこと を目的とする.具体的には、正距円筒画像の不均等な歪み の影響を受ける回転のパターンを均等化させることで、全 天球カメラの回転推定における精度向上を目指す.回転の パターンには、カメラの2フレーム間の画像から求めたデ ンスなオプティカルフローを用いる.これについては 2.1 節で詳しく説明する.

Fig. 2: Dense Optical Flow

Fig. 3: Optical Flow Patterns: Lined and Curved

2. 提案手法

2.1 デンスなオプティカルフロー

本研究では、全天球カメラから取得した2フレーム間の 正距円筒画像からデンスなオプティカルフロー(Fig. 2) を生成する.ここで、デンスなオプティカルフローとは、 前後のフレームにおいて、すべての画素の移動をベクトル として表したものである.

本研究において、2 フレーム間のデンスなオプティカル フローを入力とすることで、回転による全画素の変化が学 習できる.また、デンスなオプティカルフローを使用する ことで、物体のテクスチャ情報に依存しない、異なる環境 に対するロバスト性が期待できる.

オプティカルフローは垂直成分と水平成分で表現するこ とができ、本研究ではそれぞれを分けてデータセットの作 成を行う. これについては 3.1 節で詳しく説明する.

2.2 オプティカルフローパターンの均等化

2.1 節で述べたように、デンスなオプティカルフローは 画素の移動をベクトルで表したものである.ただし、正

Standard axis: Pitch

Standard axis: Roll Fig. 4: Uniformized Optical Flow Patterns

距円筒画像の歪みはオプティカルフローに影響する.例 えば、全天球カメラの基準軸が Fig. 3 のようであるとき、 ヨー方向周りの回転によるオプティカルフローは直線のパ ターンを示す(Fig. 3).一方、ロールとピッチ方向周り の回転によるオプティカルフローは曲線のパターンを示す (Fig. 3).つまり、ロール・ピッチ・ヨーのすべての方向に 対して回転する場合、オプティカルフローは直線のパター ンが1つ、曲線のパターンが2つ混ざっていることになる. 例えば、ロール方向を基準軸とする場合、ロール方向周り の回転によるオプティカルフローは直線のパターンであり、 ピッチとヨー方向周りの回転によるオプティカルフローは 曲線のパターンである.また、ピッチとヨー方向を基準軸 とする場合にも同様なことが言える.

1章で述べたように,全天球カメラの正距円筒画像には 歪みの問題があり,そのまま用いても高精度な推定結果が 得られない.本研究では,この問題を解決するために,各 基準軸に対する回転のパターンを均等化することを考える. 具体的には,Table 1の状態のように,各基準軸に対する 回転軸の直線・曲線のオプティカルフローパターンを均等 にする.

そのために, Fig. 3の基準軸において, ロールとピッチ

Fig. 5: E-CNN

Table 1: Optical Flow Patterns Uniformization

回転軸 基準軸	ロール	ピッチ	-Е
ロール	直線	曲線	曲線
ピッチ	曲線	直線	曲線
-E	曲線	曲線	直線

をヨー方向に合わせて軸を 90° 回転させることを考える. 軸を 90° 回転させることでその軸は基準軸となる.具体 的には,2フレームをロール方向に 90° 回転させ,回転し たフレーム間のデンスなオプティカルフローを算出する. ピッチ方向にも同様に行う.結果的に,3つのデンスなオ プティカルフローが生成される (Fig.4).

以上のように、オプティカルフローパターンが均等化 された入力データを用いて CNN による特徴抽出を行 うネットワークを本研究では E-CNN (Equirectangular-Convolutional Neural Network) と呼ぶ.

2.3 E-CNN

提案手法の E-CNN は,2 フレーム間の正距円筒画像に おけるオプティカルフローパターンの均等化(2.2節)を 行うネットワークとオプティカルフローの特徴抽出を行う ネットワークによって構成されている.

本研究では,正距円筒画像から算出したオプティカル フローの特徴抽出を行うネットワークとして CNN を用い る.用いる CNN ネットワークは, Fig. 5 に示すように, Conv1_[3×3×128], Pool1_[2×2], Conv2_[3×3×128], Pool2_[2×2], Conv3_[3×3×256], Pool3_[2×2], fc_[256], fc_[4] で構成されて いる.

本研究では、回転推定を回帰問題として解く.そのため に、全結合層の回帰器では真値と推定値とのユークリッド 距離を損失関数として、学習におけるパラメータの更新を 行う.損失関数は以下の式(1)で表される.

$$\mathcal{L}(\boldsymbol{I}) = \|\Delta \hat{\boldsymbol{q}} - \Delta \boldsymbol{q}\|_2. \tag{1}$$

式 (1) は、2 フレーム間のデンスなオプティカルフロー パターンの均等化を行った入力 **I** において、ネットワーク が推定したクォータニオンで表す回転量 $\Delta q = (\Delta w, \Delta a, \Delta b, \Delta c)$ と、回転量の真値 \hat{q} の差分の二乗誤差を表してい る. つまり、この損失関数が最小になるようにパラメータ を更新する回帰を行う.

3. 実験

3.1 データセットの作成

データセットは3次元コンピュータグラフィックスソフ トウェアである Blender を使用して作成した. Blender 環 境とカメラ視点を Fig. 6 に示す.

まず, Blender 上の屋外の都心⁷⁾ における学習用の 10 シーン(1~10)を設定し, 1~10 シーン以外の検証・テ スト用の 10 シーン(11~20)を別途に設定した. 学習用 と検証・テスト用のシーンに別々にする理由は, 学習した シーンに対する過学習を防止し, 学習に一般性を保たせる ためである.

Fig. 6: Blender Environment (left) and Camera Viewpoint (right)

次に,全天球カメラ画像を大きさ 100×200 の正距円筒 画像として取得した.学習データセットについては,学習 に一般性を持たせるために,取得するシーン(1~10)と 初期姿勢をランダムに設定した.また,初期姿勢からの回 転量は各回転軸に対して 0°~10°に制限し,0.5°刻みとし て計 9,261 枚のオプティカルフローを学習データとした. 回転量を制限する理由は,オプティカルフローが算出でき る角度と,各フレームは移動量は微小であることを考慮し たためである.

検証・テストデータについては、学習データセットと同様にシーン(11~20)と初期姿勢をランダムに設定した. また、回転量を各回転軸に対して 0°~10°に制限し、ラン ダムに設定して計 1,000 枚のオプティカルフローを各々用 意した.以上で説明した各データセットの構成については Table 2 に示す.

Table 2: Datasets Composition

種類項目	学習データ	検証データ	テストデータ
シーン番号	$1 \sim 10$	$11 \sim 20$	$11 \sim 20$
枚数 [枚]	9,261	1,000	1,000

デンスなオプティカルフローの算出には, DeepFlow⁶⁾ を用いる.この手法では,移動前後の画素の輝度値は不変 であり,全体的なオプティカルフローは滑らかであること を仮定し,特徴点のマッチングを行うことでオプティカル フローを推定している.

最後に、2.2 節で述べたオプティカルフローのパターン を均等化を行うために、ロールとピッチ方向に各々90°回 転させ、2 フレーム間のオプティカルフローを生成した. 以上で生成した3つのオプティカルフローを垂直成分と水 平成分に分けて6 チャンネルの配列として保存した.

3.2 推定実験

2.3 節で提案した E-CNN ネットワークを用いて回転推 定の実験を行った.活性化関数には ReLU⁸⁾を用い,パ ラメータの更新方法には Adam オプティマイザー⁹⁾を採 用した.また,バッチサイズは 128,学習率は 0.001,エ

ポックは 100 で学習を行った. 学習・検証・テストにおい て、CPU は NVIDIA 制の CoForge CTY 1080Tiv 2 を

て, GPU は NVIDIA 製の GeForce GTX 1080Ti×3 を, CPU は Intel 製の Xeon E5-1650 v4 を使用した.

推定実験では,提案手法であるオプティカルフローパ ターンの均等化による精度向上を確認するために,均等化 前後の2種類をデータセットを用いて行った.なお,デー タセットや活性化関数,パラメータの更新方法,ハイパー パラメータなどは同条件で行った.

推定結果を Table 3 に示す. この表では, 1,000 枚のテ ストデータにおける推定誤差を角度として表したときの中 央誤差と平均誤差を示している.

Table 3: Estimation Results

種類 誤差	均等化前	均等化後(提案手法)
中央誤差 [°]	0.270	0.198
平均誤差 [°]	0.278 ± 0.106	0.211 ± 0.100

また,1,000 枚のテストデータに対する均等化前後の推 定誤差のヒストグラムを Fig. 7 に示す.縦軸はテストデー タのサンプル数,横軸は推定誤差を示している.

実験では、高精度な回転推定の結果が得られており、さらに、提案手法による約 24.1%の精度向上が確認できた. また、学習データと異なるシーンに対するテストデータを 用いることで、学習の汎化能力を確認した.

4. 結論

本研究では、全天球カメラから取得した正距円筒画像の 歪みによって生じる不均等なオプティカルフローパターン を均等化する E-CNN を構築して全天球カメラの 3 自由 度の回転推定を行った.推定実験では、提案手法による精 度向上を確認した.今後の課題としては、実際のカメラに よって取得したデータに対する検証と全天球カメラの 6 自 由度の運動(回転・並進)推定が挙げられる.

謝辞

本研究の一部は、内閣府総合科学技術・イノベーション 会議の戦略的イノベーション創造プログラム(SIP)「イン フラ維持管理・更新・マネジメント技術」(管理法人:国 立研究開発法人新エネルギー・産業技術総合開発機構) に よって実施された.

参考文献

- 1) G. Klein and D. Murray: "Parallel Tracking and Mapping for Small AR Workspaces", Proceedings of the 6th IEEE/ACM International Symposium on
- Mixed and Augmented Reality, pp. 225–234, 2007. 2) R. Mur-Artal, J. Montiel and J. Tardos: "ORB-SLAM: A Versatile and Accurate Monocular SLAM System", *IEEE Transactions on Robotics*, Vol. 31, No. 5, pp. 1147–1163, 2015.
- 3) R. Clark, S. Wang, H. Wen, A. Markham and N. Trigoni: "VINet: Visual-Inertial Odometry as a Sequence-to-Sequence Learning Problem", Proceedings of the 31th AAAI Conference on Artificial In*telligence*, pp. 3995–4001, 2017. 4) G. Constante, M. Mancini, P. Valigi and T. Cia-
- rfuglia: "Exploring Representation Learning With

Vol. 1, No. 1, pp. 18–25, 2016.

- 5) M. Qiao and Z. Wang: "Learning the Frame-2-Frame Ego-Motion for Visual Odometry with Convolutional Neural Network", Proceedings of the 2th Chinese Conference on Computer Vision, pp. 500-511, 2017.
- 6) P. Weinzaepfel, J. Revaud, Z. Harchaoui and C. Schmid: "DeepFlow: Large Displacement Optical Flow with Deep Matching", Proceedings of the 2013 IEEE International Conference on Computer Vision, pp. 1385–1392, 2013.
- 7) Z. Zhang, H. Rebecq, C. Forster and D. Scara-muzza: "Benefit of Large Field-of-View Cameras for Visual Odometry", Proceedings of the 2016 IEEE International Conference on Robotics and Automation, pp. 801-808, 2016.
- 8) V. Nair and G. Hinton: "Rectified Linear Units Improve Restricted Boltzmann Machines", Proceedings of the 27th International Conference of Machine Learning, pp. 807-814, 2010.
- 9) D.P. Kingma and J. Ba: "Adam: A Method for Stochastic Optimization", Proceedings of the 3rd International Conference for Learning Representations, pp. 1–13, 2015.