# 屈折を利用したスケール復元が可能な Structure from Motionによる屈折量が小さい状況下における スケール復元の頑健性の向上

O後田 啓太朗<sup>†</sup>, 樋口 寬<sup>‡</sup>, 山下 淳<sup>‡</sup>, 淺間 一<sup>‡</sup>
 †: 東京大学 工学部 精密工学科
 ‡: 東京大学大学院 工学系研究科 精密工学専攻
 ushiroda@robot.t.u-tokyo.ac.jp

概要:本研究では屈折を利用したスケール復元が可能な Structure from Motion (SfM) における, 屈折が小さい状況での復元の頑健性を向上させる手法を提案する. SfM とは1 台のカメラを移 動させながら取得した画像のみを用いて3 次元計測を行う手法であり,透明平板を計測対象と カメラの間に設置して屈折を生じさせることにより,計測対象のスケールまで含めた3 次元計 測が可能となる.従来研究では厚い平板を用いているが,実利用化には透明平板の薄型化が必要 である.そこで本研究では屈折の大きさに応じた重みを設計しパラメータ推定に用いることで, 平板が薄くなった場合でも頑健な3 次元計測を図る.シミュレーション実験によって従来研究 に比べて提案手法の有効性が示された.

 $< \neq - \mathcal{D} - \mathcal{F} >$  Computer vision, 3D measurement, Structure from Motion, Refraction

# 1. 序論

Structure from Motion (SfM)は、1 台のカメラを移動 させながら取得した画像のみを用いて 3 次元計測を 行う手法である[1]. SfMでは、画像情報のみを用いて 計測対象の形状を推定すると同時に,外部パラメータ と呼ばれるカメラの位置姿勢を算出することができる. しかし、カメラの並進移動の大きさを求めることはでき ず,計測対象の大きさ(スケール)を推定できない問 題点がある.この問題を解決するために従来研究で は、水中環境での SfM で、空気とカメラの保護ケース と水という3種類の異なる媒体間で生じる屈折を利用 することでスケール復元を可能にした[2]. しかし、この 手法は特殊な環境に限定されており,一般的な利用 は困難である. そこで柴田らはカメラに対して透明平 板を固定し、平板での屈折を SfM に利用することで、 地上でのスケールを含めた3次元復元が可能なSfM を提案している[3,4]. さらに奥村らは量子化誤差や誤 対応点などの計測時に生じる誤差に頑健な, スケー ルまで含めた3次元復元の理論を構築している[5,6].

精度の良いスケール復元には十分な屈折量を確保 するために厚い透明平板が必要であるが,移動を伴 う SfM において,重厚な透明平板は実用的ではない. そこで従来研究では,透明平板の薄型化のために, 平板の厚さに依らない一般的な精度向上の手法を導 入して薄型化に対応している[7].しかし,薄型化の失 敗の原因である屈折の大きさ自体の考慮はしていない.

そこで本論文では、透明平板での屈折によって発 生する光線の変化量と誤差の関係に着目する.変化 量が大きいほどスケール復元を含めた SfM の計算に 有効であると考え、カメラの位置姿勢の算出と 2 視点 のバンドル調整による最適化の際に、変化量に応じて 重みを考慮する.これによって、透明平板が薄いため に光線の変化量が小さくなる厳しい環境下において も、SfM 手法による 2 視点での、スケールまでを含め た復元を頑健に行うことが可能となる.

# スケール復元可能な SfM の計測システム

#### 2.1. 屈折を用いた SfM の原理

本論文が基礎とする,屈折を用いた 2 視点での SfM の計測手法について述べる[3,4].透明平板によ る屈折を利用した 2 視点での SfM の概念図を図 1 に 示す.この手法では,カメラと計測対象の間に透明平 板を設置し,透明平板を通して画像を取得する.カメ ラと透明平板は,任意の位置関係で固定して移動さ せる.このようにして取得した画像を入力として用いる ことで,出力として計測対象の 3 次元点群位置とカメ ラの回転行列と並進ベクトルを得ることができる.

ここで,カメラと透明平板の関係を図2に示す.



図1 2視点間での幾何学的関係

図 2 に示されている赤い破線は、カメラに入射する光線の経路を表している. 光線に関して、屈折の前後で2 つの単位ベクトルを定義する.2 つのベクトルとは、カメラから透明平板への光線の方向を示す内側光線ベクトル $r_{in}$ と、透明平板から計測対象点への光線の方向を示す外側光線ベクトル $r_{out}$ である.図2から、内側光線ベクトル $r_{in}$ と、外側光線ベクトル $r_{out}$ の方向は同じであるが、同一直線状になく、ずれが生じることがわかる.このずれの透明平板の法線ベクトルnの方向への正射影を変化量ベクトルdと定義する.変化量ベクトルdはその大きさをdとすると、d = dnとなる.また、変化量ベクトルdの大きさdは、

$$d = w \left( 1 - \frac{\mathbf{r}_{\text{in}} \cdot \mathbf{n}}{\sqrt{n_1^2 - \left||\mathbf{r}_{\text{in}} \times \mathbf{n}|\right|^2}} \right), \qquad (1)$$

と求めることができる.ここでwは透明平板の厚さ, n1 は透明平板の屈折率である.空気中の屈折率は1と



図2 カメラと透明平板の位置関係と光線ベクトル

している. 内側光線ベクトル**r**<sub>in</sub>は, 対応点の画像座標 から算出可能である.

図 1 の幾何学的関係で、カメラの移動ベクトルと光 線ベクトルはすべて同一平面上にあることを利用して、

{
$$(\mathbf{t} + \mathbf{R}^{-1}\mathbf{d}' - \mathbf{d}) \times \mathbf{R}^{-1}\mathbf{r}'_{out}$$
}<sup>T</sup> $\mathbf{r}_{out} = 0,$  (2)

と立式されるため、平板を使用しないSfMでは不可能 であったカメラの並進ベクトルの大きさも算出可能に なる.つまり、屈折によって計測対象のスケールまで 含めた3次元形状の復元が可能になる.

#### 2.2. 計測時の誤差への頑健性の向上

屈折を用いた SfM において, 誤対応点や量子化 誤差に対して頑健な計測を行う必要がある. 誤対応 点の影響を取り除くために, RANSAC (RANdom SAmple Consensus)を利用する[6,8]. さらにより正確 な結果を得るために RANSAC の結果を初期値として 2 視点でのバンドル調整を導入する[7].



### 3. 提案手法

#### **3.1.** 提案手法の概要

本論文では,透明平板による屈折から生じる変化 量ベクトルの大きさが小さい条件下でも,屈折を用い た SfM のスケール復元の精度を向上させるために, 図 3(b)の一連の提案手法を導入する.

図3(a)の従来手法では、画像上の点すべてをSfM に用いる[7]が、提案手法は、変化量ベクトルの大きさ が大きなものほどスケール復元への信頼度が高いと 考え、変化量ベクトルの大きさに応じた重みを導入す る.この重みを考慮してカメラの位置姿勢である外部 パラメータの算出や2視点でのバンドル調整をするこ とにより、変化量ベクトルが小さい条件下でも頑健なス ケールを含めた SfM が可能になる.

#### 3.2. 重みの設計

変化量ベクトルの大きさに応じた重みは、図 4 のように、*d*<sub>threshold</sub>を閾値とし、[0,1]の範囲で設計する. 画像上の点の変化量ベクトルの大きさは、式(1)により計算可能であり、*d*<sub>min</sub>と*d*<sub>max</sub>は変化量ベクトルの大きさの最大値と最小値に対応している.*d*<sub>threshold</sub>は、 画像上の点のすべての変化量ベクトルの大きさの平均値とする.

3.3. 重みを考慮した外部パラメータの算出

従来手法による外部パラメータを算出する方法を 説明する.各ベクトルの成分を $\mathbf{r}_{out} = (x, y, z)^{T}$ ,  $\mathbf{d}_{out} = (d_1, d_2, d_3)^{T}$ ,  $\mathbf{r}'_{out} = (x', y', z')^{T}$ ,  $\mathbf{d}' = (d'_1, d'_2, d'_3)^{T}$ とし,式(2)を既知数と未知数の積の形と なるように整理すると,

$$\mathbf{u} = \begin{pmatrix} xx' \\ yx' \\ zx' \\ xy' \\ yy' \\ yy' \\ zy' \\ xz' \\ yz' \\ zz' \\ d_{3}yx' - d_{2}zx' + d'_{3}xy' - d'_{2}xz' \\ d_{1}zx' - d_{3}xx' + d'_{3}yy' - d'_{2}yz' \\ d_{2}xx' - d_{1}yx' + d'_{3}zy' - d'_{2}zz' \\ d_{3}yy' - d_{2}zy' + d'_{1}xz' - d'_{2}xx' \\ d_{1}zy' - d_{3}xy' + d'_{1}yz' - d'_{3}yx' \\ d_{2}xy' - d_{1}yy' + d'_{1}zz' - d'_{3}zx' \\ d_{3}yz' - d_{2}zz' + d'_{2}xx' - d'_{1}xy' \\ d_{1}zz' - d_{3}xz' + d'_{2}yx' - d'_{1}zy' \end{pmatrix},$$
(3)



を用いて,

$$\mathbf{u}^{\mathrm{T}}\mathbf{g} = \mathbf{0},\tag{5}$$

と表される. ここで,  $r_{ij}$ は回転行列Rのi行j列の成分 の値であり,  $t_i$ は並進ベクトルtのi番目の成分の値で ある. また,回転行列Rの正規性と直行性を制約条件 として,未知数を推定することにより外部パラメータを 算出する[7].制約条件は,式(6)のように表せる. た だし, $\delta_{ij}$ はクロネッカーのデルタである.

$$a_{ij} \coloneqq [r_{i1} \ r_{i2} \ r_{i3}] [r_{j1} \ r_{j2} \ r_{j3}]^{\mathrm{T}} - \delta_{ij} = 0.$$
(6)  
(1 < i < i < 3)

透明平板が薄く,変化量ベクトルも小さくなると,式 (5)の解は量子化誤差の影響を大きく受け不安定に なる.この問題を解決するために,提案手法では式(5) に変化量ベクトルの大きさによる信頼度を考慮した重 みhをかけた条件式を作る.つまり,カメラの位置姿勢 である外部パラメータを推定する際には,式(7)を最 小二乗法により最適化する.最適化には Levenberg-Marquardt 法を用いる.

$$F = \sum_{i} h_{i} \left| \left| \mathbf{u}_{i}^{T} \mathbf{g} \right| \right|^{2} + \sum_{i,j} a_{ij}^{2}.$$
(7)

推定には誤対応点の影響を取り除くために RANSAC を利用する. サンプリングには式(5)を解く ための必要最小点数の 17 点をランダムに選択して使 用する.

#### 3.4. 重みを考慮した2視点のバンドル調整

外部パラメータを算出したのち,より正確な結果を 得るために2視点のバンドル調整を行う.従来手法で は、バンドル調整の過程において、図5に示されるよ うにj視点目のi番目の推定外側光線ベクトルfout ijを 用いて画像面上に再投影した点と、内側光線ベクトル rin ijの画像面上の投影点の差を再投影誤差と定義 し、この再投影誤差を最小化する最適化を行う.推定 内側光線ベクトルと推定外側光線ベクトルの方向は 同じであるため、内側光線ベクトルrin ijと推定外側光 線ベクトルfout ijの方向が近づくと、再投影誤差も小 さくなる.その結果、計測点と推定点が近づき、正確 性の高い3次元復元が可能となる.

提案手法でも変化量ベクトルの大きさが大きいほど 信頼度が高いと考え、変化量ベクトルの大きさによる 重みを考慮して2視点でのバンドル調整を行う.ただ し、図4で定義される重みhを導入すると、hが小さい 点は、十分なバンドル調整ができず正確性の低い復 元になると考えられる.したがって、図3の提案手法の ように、バンドル調整を2回実行する.

1回目のバンドル調整では、RANSACから得られる 推定結果を初期値として採用し、外部パラメータと推 定点の整合性を考慮する.したがって、式(8)のように、 評価関数に重みhをかけあわせる.x<sub>i</sub>を推定点の3次 元座標とする.

$$e_1(\mathbf{R}, \mathbf{t}, \mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_m) = \sum_{i,j} h_{ij} \left| \left| \mathbf{r}_{\text{in } ij} - \hat{\mathbf{r}}_{\text{out } ij} \right| \right|.$$
(8)

2回目のバンドル調整では、1回目のバンドル調整 から得られた結果のカメラの位置姿勢である外部パラ メータを固定し、推定点の位置のみを変数とする.改 めて再投影誤差を計算し最適化を行うことにより、推 定点だけの整合性を考慮することができる.評価関数 は式(9)を用いる.

$$e_2(\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_n) = \sum_{i,j} \left| \left| \mathbf{r}_{\text{in }ij} - \hat{\mathbf{r}}_{\text{out }ij} \right| \right|.$$
(9)

両方のバンドル調整で最適化には Levenberg-Marquardt 法を用いる.



図5 再投影誤差の定義

#### 4. シミュレーション実験

#### 4.1. シミュレーション実験の環境設定

提案手法の有効性を検証するために行ったシミュ レーション実験について述べる.従来手法は図3(a)と し,提案手法は図3(b)とする.計測対象はStanford Bunnyの点群形状モデルを用いる.使用した点群は 453点で,異なる2視点から取得した2枚の画像を用 いて復元を行った.従来研究では30mmや50mmの 厚さの透明平板を用いていた[7]が,提案手法により, 透明平板が薄く変化量ベクトルが小さい状況でも屈 折を用いたスケール復元可能なSfMの頑健性が向 上していることを示すために,本論文では20mmの厚 さの透明平板を用いた.また,計測時の誤差として, 整数精度の量子化誤差を考慮し,画像上での位置が ずれていることに生じる点の誤対応を全体の1%に付 与した.

#### 4.2. 従来手法と提案手法の復元結果の比較

ランダム選択や誤差による影響をなるべくなくすために,従来手法と提案手法による SfM をそれぞれ 30 回ずつ実施し,平均を比較する.

本論文では2種類の比較実験を行う.実験1では, 重みを考慮した外部パラメータの有効性を検証する. 比較には,図3の,RANSAC後の結果である外部パ ラメータを従来手法・提案手法ともに用いる.これらと 真値とを比較し提案手法の有効性を検証する.実験 2では,重みを考慮したバンドル調整の有効性を検証 する.図3の最終的な推定点を用いて,真値からの距 離の差を誤差として平均を比較する.提案手法では, 画像上の点の変化量ベクトルから算出した,図4の通 りの[0,1]の範囲の重みをかけあわせている. *d*thresholdは画像上の点のすべての変化量ベクトルの 大きさの平均とした.

#### 表1 外部パラメータ(真値)

| 回転行列 R  |      | 並進ベクトル t [mm] |
|---------|------|---------------|
| 1.00 0  | 0    |               |
| 0 0.82  | 0.57 | 201           |
| 0 -0.57 | 0.82 | 63.3          |

表2 RANSAC後の外部パラメータ(従来手法)

| 回転行列 R                                                      | 並進ベクトル t [mm]        |
|-------------------------------------------------------------|----------------------|
| $ \left(\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$ | 0.03<br>50.0<br>15.8 |

表3 RANSAC後の外部パラメータ(提案手法)

| 回転行列 R                                                      | 並進ベクトル t [mm]        |
|-------------------------------------------------------------|----------------------|
| $ \left(\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$ | 0.05<br>69.5<br>21.9 |

## 4.2.1. 重みを考慮した外部パラメータの有効性 の検証

外部パラメータの真値を表1 に示す.また,実験1 を通して従来手法により得られた外部パラメータの平 均値を表2 に,提案手法により得られた外部パラメー タの平均値を表3 に示す.これらの値は,それぞれ 30回の平均値を用いた.

回転行列に関しては、提案手法・従来手法ともに正 確な値が算出されている.一方、並進ベクトルに関し ては、従来手法に対して、提案手法が真値におよそ 10%近い値になっている.

# 4.2.2. 重みを考慮したバンドル調整の有効性の 検証

実験 2 を通して, 従来手法により得られた最終的 な推定点と計測点の真値との距離の差の平均の分布 と, 提案手法により得られた最終的な推定点と計測点 の真値との距離の差の平均の分布を図 6 に示す. 1 回の試行で得られた点群の推定値と真値のユークリッ ド距離の差のすべての平均を誤差とし, 30 回の試行 の平均を誤差平均と定義した.また, 従来手法により 得られた外部パラメータの平均値を表 4 に, 提案手 法により得られた外部パラメータの平均値を表 5 に示 す.

まず従来手法について,図6より,46.7%の割合で 誤差平均が200mmを上回る結果となったことがわか

表4 バンドル調整後の外部パラメータ(従来手法)

| 回転行列 R       | 並進ベクトル t [mm] |
|--------------|---------------|
|              | -55           |
| 0 0.82 0.57  | 86312         |
| 0 -0.57 0.82 | 27054         |

表5 バンドル調整後の外部パラメータ(提案手法)



図6 復元結果の誤差平均の分布

る. この内, 誤差平均が 1000 mm を超えるものはおよ そ21%を占めていた. つまり, 従来手法では透明平板 が薄くなった場合に, スケールを含めた復元は高い確 率で失敗した. また, 表 4 では, 回転行列は表 1 の 真値の値と一致しているが, 並進ベクトルは, 真値か ら大変遠い値となった. 表 2 の RANSAC 後の並進 ベクトルの値と比較すると, バンドル調整が原因で並 進ベクトルの推定がうまくいっていないといえる.

続いて提案手法の結果を検証する. 図 6 より, 50% 以上の確率で誤差平均が 50 mm 以下であった. この 内, 誤差平均が 20 mm 以下のものはおよそ 17.6%を 占めていた. また, 表 5 では, 回転行列の値は表 1 の真値と一致しており, 並進ベクトルも重みを考慮し たバンドル調整により, 表 3 の重みを考慮した RANSAC の後よりも真値に近い値に調整された.

以上の実験結果から,提案手法を用いることで,屈 折により生じる変化量ベクトルが小さい場合でも,屈 折を用いた SfM のスケールを含めた復元の頑健性 の向上に成功した.

# 5. 結論

本論文では、薄い透明平板を用いた際の、変化量 ベクトルが小さい条件下でのスケールを含めた SfM の頑健性を向上させるために、変化量ベクトルの大き さに応じた重みを導入した.

実環境における提案手法の有効性の評価が今後 の課題である.

#### 参考文献

- Rechard Hartley and Andrew Zisserman: "MultipleView Geometry in Computer Vision", Cambridge UniversityPress, Second Edition, 2004.
- [2] Anne Jordt-Sedlazeck, Reinhard Koch, "Refractive Structure-from-Motion on Underwater Images", The IEEE International Conference on Computer Vision (ICCV 2013), 2013, pp. 57-64.
- [3] Akira Shibata, Hiromitsu Fujii, Atsushi Yamashita and Hajime Asama: "Scale-Reconstructable Structure from Motion Using Refraction with a Single Camera", Proceedings of the 2015 IEEE International Conference on Robotics and Automation (ICRA 2015), pp. 5239–5244, 2015.
- [4] Akira Shibata, Hiromitsu Fujii, Atsushi Yamashita and Hajime Asama: "Absolute Scale Structure from Motion Using a Refractive Plate", Proceedings of the 2015 IEEE/SICE International Symposium on System Integration (SII 2015), pp. 540–545, 2015.
- [5] 奥村有加里,藤井浩光,山下淳,淺間一: "屈折を利用 したスケール復元が可能な計測誤差に頑健な Structure from Motion",精密工学会誌, Vol. 83, No. 12, pp. 1201-1208, 2017.
- [6] 奥村有加里,藤井浩光,山下淳,淺間一: "屈折を用い たスケール復元可能な Structure from Motion の誤対応 点への頑健化",日本機械学会ロボティクス・メカトロ ニクス講演会 2018 講演論文集, 2A1-J13, pp. 1-2, 2018.
- [7] 奥村 有加里,藤井 浩光,山下 淳,淺間 一: "透明薄板 による屈折を利用したスケール復元が可能な Structure from Motion", 2018 年度精密工学会春季大会学術講演 会講演論文集, pp. 269-270, 2018.
- [8] Martin A. Fischler and Robert C. Bolles: "Random Sample Consensus: Paradigm for Model Fitting with Applications to Image Analysis and Automated Cartography", Communications of the ACM, Vol 24, No. 6, pp. 381-395, 1981.

後田 啓太朗:東京大学工学部精密工学科所属. Structure from Motion に関する研究に従事.

樋口 寬: 2016年3月東京大学工学部精密工学科卒業.2018年3月東京大学大学院工学系研究科精密工学専攻修

士課程修了.2018年4月東京大学大学院工学系研究科博 士課程入学.長尺構造物の3次元計測の研究に従事.

山下 淳: 2001年3月東京大学大学院工学系研究科精密機 械工学専攻博士課程修了,博士(工学).静岡大学助 手,助教,准教授を経て,2011年10月東京大学大学院工 学系研究科精密工学専攻准教授,現在に至る.知能ロボ ット,コンピュータビジョン,画像処理の研究に従事.

淺間 一: 1984 年東京大学大学院工学系研究科修士課程修 了. 1986 年理化学研究所研究員補. 同副主任研究員等を 経て, 2002 年東京大学人工物工学研究センター教授. 2009 年同大学院工学系研究科教授. IEEE フェロー. 日本 ロボット学会フェロー. 日本機械学会フェロー.