カセンサとカメラからのマルチモーダルデータに基づいた コンクリート構造物の変状検出

○湊 真司 †, ルイ笠原 純ユネス †, モロ アレッサンドロ ‡, 禹 ハンウル *, 藤井 浩光 **, 山下 淳 †, 淺間 − †

 \bigcirc Shinji MINATO †, Jun Younes LOUHI KASAHARA †, Alessandro MORO ‡, Hanwool WOO *, Hiromitsu FUJII **, Atsushi YAMASHITA † and Hajime ASAMA †

†:東京大学,‡:ライテックス,*:秋田県立大学,**:千葉工業大学 E-mail: minato@robot.t.u-tokyo.ac.jp

<要約>トンネルや橋梁等のコンクリート構造物の点検は,風や車両音が発生する外部環境下で行うため,点検手 法は騒音にロバストであることが求められる. 簡便性の高さから常用される打音検査法と比較し,インパクトハン マの力センサを用いた点検手法であるインパクト法は,騒音にロバストであるという特徴をもつ. しかし,イン パクト法は打音検査法に比べ深い亀裂の検出が困難であるため,手法の改善が望まれる. そこで本研究では,イ ンパクト法の力センサの応答に加えて,カメラ画像から取得したコンクリート表面の亀裂位置とサンプル位置を 考慮することで,亀裂深部の検出性能の向上を図った. コンクリート試験体を用いた実験結果から,亀裂深部の 検出率の向上が確認できた.

<キーワード>コンクリート変状検出,インパクトハンマ,力センサ,マルチモーダル,クラスタリング

1 序論

国内におけるトンネルや橋梁等の社会インフラの構 築は高度経済成長期の1960~80年代に集中して行われ たため、今後20年の間に社会インフラの老朽化が加速 度的に進むことがわかっている.社会インフラの事故 の発生防止には点検作業が有効であるが、現状点検作 業の大部分は人手で実施されている.点検員がチョー キングと呼ばれる点検作業を行う様子を図1に示す.人 手による点検作業で問題とされるのが、異常箇所の検 出率が点検員の技量に依存する点である.さらに、熟 練した技術を持つ点検員は高齢化を背景に減少傾向に ある[1].そのため、今後社会インフラの事故の発生を 防止するために、ロボットや自動化技術により点検作 業を大幅に効率化し、点検員の技量に依らない点検手 法を早期に確立することが重要である.

トンネルや橋梁に代表されるように,社会インフラ の多くはコンクリート構造物である.コンクリート構 造物の異常状態(変状)の検出を目的とした実際の点 検では,簡便性に優れた打音検査法が広く用いられる. 打音検査法では,コンクリート表面をハンマで打叩し た際の音の違いを分析することで,亀裂等の変状部を 検出する.また,打音検査法では,目視検査では確認 できない,天井部のコンクリートが剥がれ落ちる剥離 の危険性の判断に重要である亀裂の方向と深さを確認 できる.自動化の研究に関しては,打音の音圧特性に

図 1 点検員によるトンネルの点検作業

着目した手法 [2],機械学習を用いて打音を分類する手法 [3,4] が提案されている.しかし,これらの研究では 音を入力信号とするため,騒音による検出精度の低下 が問題となる.実際の点検では検査環境は外部にあり, 風や車両音等の騒音は避けられないため,本問題は十 分に考慮する必要がある.

騒音頑強性と打音検査法に匹敵する簡便性を両立さ せた手法として,筆者らはインパクトハンマの力セン サを用いたインパクト法をこれまでに提案している [5]. インパクト法では,先端に力センサが付いたインパク トハンマでコンクリート表面を打叩し,力センサの応 答を分析することで変状の有無を判断する.しかし,イ

(a) 亀裂が存在するコンクリートにおける変状位置

コンクリート (側面図)

(b) 亀裂が存在するコンクリートの側面図図 2 亀裂が存在するコンクリートのモデル図

ンパクト法の問題としては, 亀裂が深くなるほど, 変 状の検出が困難になる点が挙げられる. 亀裂が深いほ ど変状検出が困難になる傾向は, 打音検査法でも確認 されているが, 30mm 以上の深さの変状検出が困難で あるインパクト法に特に顕著である [5]. この理由とし ては, 打音検査法に比ベインパクト法では変状検出に 有効なデータ量が少ないことが一因であると予想され る. 実際, 打音検査法では約 23ms [4] の打音データを 使用するが, インパクト法ではハンマ接触時の約0.2ms の力センサのデータしか変状識別に有効ではないため, 有効データ量は時間換算で 100 倍以上異なる. そのた め, 力センサ以外の情報を付加することで, 深い亀裂 の検出に必要な情報を補完することが望まれる.

検査で取得可能な情報としては、インパクトハンマ打 叩時の打音、コンクリート表面の画像や3次元形状 [6] 等が挙げられる.しかし、インパクト法の利点である 騒音頑強性と簡便性を維持する制約から、騒音に脆弱 な打音情報や、レーザ装置の精緻な固定が求められる 3次元形状取得を除外し、本研究ではカメラから簡便 に取得できる画像情報に着目した.そのため、本研究 では深い亀裂の検出率改善を目的とし、カセンサの応 答に、サンプル位置とカメラ画像から得られるコンク リート表面の亀裂の位置を付加する手法を提案する.

図 3 提案手法の処理フロー

2 提案手法

2.1 提案手法のコンセプト

亀裂が存在するコンクリートにおける変状部と健状 部の位置を図2(a)に示す.図2(a)に示すように,内部 に亀裂が存在する箇所が変状部,亀裂が存在しない箇 所が健状部である.また,コンクリート表面上の亀裂 の位置は,カメラ画像から画像処理により取得可能で あるが,内部の亀裂の位置は不明である.なお,本研 究では枝分かれをする亀裂は対象とせず,亀裂が深く なるほどコンクリート表面から遠ざかる亀裂を対象と する.図2(a)のコンクリートの側面図を図2(b)に示 す.図2(b)に赤色でサンプルと表記されている箇所は, インパクトハンマを打叩して力センサの応答を計測し た箇所を示す.また,サンプル1とサンプル2は下方 に亀裂が存在するため,どちらも変状部である.

カセンサの応答を比較した場合,サンプル1がサン プル2に比べて内部の亀裂が浅いために,変状を検出 できる可能性が高い.一方で,表面上の亀裂とサンプ ル間の距離を考えると,サンプル2に比べてサンプル 1が表面上の亀裂に近い.つまり,表面上の亀裂に近い サンプルほど,変状を検出できる可能性が高いことが わかる.そこで,変状部であるサンプル2のクラスタ を決定する際に,変状部と識別される可能性の向上を 目的として,サンプル2自体の情報に加え,サンプル1 のようなサンプル2より表面上の亀裂に近く,変状検 出可能性が高いサンプルのクラスタ情報を考慮するこ とが,本提案手法のコンセプトである.

2.2 提案手法の概要

提案手法の処理フローを図3に示す.まず,検査対 象物のコンクリート表面の複数箇所をインパクトハン マで打叩し,各サンプルのインパクトハンマの力セン サの応答を計測する.次に,計測した力センサの応答 から,高速フーリエ変換を用いてフーリエスペクトル を計算し,これを特徴量ベクトルとする.またカメラ 画像に画像処理を行うことで,コンクリート表面上の 亀裂の位置情報を取得する.最後にFuzzy C-Meansを 改良したクラスタリング手法を用いて,カメラ画像か

図 4 一般的なインパクトハンマ (PCB 社, 086C03)

ら取得した亀裂の位置情報とサンプルの位置情報に基 づき,各サンプルの特徴量ベクトルを2個のクラスタ に分類する.なお本手法では,クラスタリングの結果 は2種類の分類であり,どちらが変状部であるかは特 定できない.しかし,実際の検査を行うトンネルでは, 変状部の領域は健状部の領域より狭いため,本研究で は分類後のクラスタのうち,サンプル数が少ないクラ スタを変状部として決定する.

2.3 インパクトハンマの概要

インパクトハンマを図4に示す.インパクトハンマ は、構造物に撃力を加え、先端部に内蔵された力セン サの応答から、打叩時の力の信号を計測できる.イン パクトハンマは、先端に交換可能なチップを取り付け て使用する.チップの使用には撃力をセンサに伝える と同時に、損傷しないようにセンサ面を保護する目的 がある.またインパクトハンマに取り付けるチップの 剛性を変更することで、加振力と周波数範囲を調整す ることができる.ハンマのヘッド部分には水晶もしく はセラミックを素材とする圧電素子の力センサが内蔵 されている.この力センサは、機械的圧力に比例して 分極するという圧電素子の性質を利用することで、外 力を電圧に変換する.そのため力センサの応答から、イ ンパクトハンマでコンクリート材料を打叩した際の接 触力の時間変化を観測できる.

2.4 亀裂の画像処理手法

本研究では、カメラ画像に閾値処理を行って亀裂を検 出した.まずカメラから取得したコンクリートの RGB 画像をグレースケール画像に変換する.次に、得られ たグレースケール画像の座標 (x, y) における輝度値で ある src(x, y) を、閾値である T_c を基準に2値に分類 する.2値化画像の座標 (x, y) における輝度値である dst(x, y) は、式 (1) で求められる.亀裂は健状部に比 べ輝度が低いため、輝度値 dst(x, y) が0である箇所を 亀裂とする.なお、閾値 T_c については、亀裂が検出で きるように、結果を確認しながら最適な閾値を人間が 設定を行う.

$$dst(x, y) = \begin{cases} 255, & \text{if } src(x, y) > T_c \\ 0, & \text{otherwise} \end{cases}$$
(1)

2.5 特徴量ベクトルの抽出

インパクトハンマを N 回打叩して得られたサンプ ルの中で, i 番目のサンプルを \mathscr{X}_i とする. 高速フーリ エ変換を用いて,各サンプル { \mathscr{X}_i }_[i=1,...,N]のフーリ エスペクトルを計算し,これを N 個の特徴量ベクトル { \mathbf{x}_i }_[i=1,...,N] とする.

2.6 提案するクラスタリングアルゴリズム

本研究では、Fuzzy C-Means を改良したクラスタリ ングアルゴリズムを提案する.Fuzzy C-Means を使用 した理由は、Fuzzy C-Means ではサンプルが各クラス タに所属する度合いを帰属度を用いて表現するため、亀 裂やサンプルの位置情報に基づいた重み付けが容易で あるからである.Fuzzy C-Means は、初期化後、帰属 度とクラスタ中心の更新を終了条件を満たすまで繰り 返し、クラスタを決定するという流れでクラスタリン グを行う.本提案手法では、初期化、クラスタ中心の 更新、クラスタ決定の各ステップにおける処理は通常 のFuzzy C-Means と同様であるが、帰属度の更新を以 下のように変更する.

帰属度 u_{ij} の最初の更新則を,式 (2) に示す.式 (2) は,通常の Fuzzy C-Means と同様の帰属度の更新則で ある. K はクラスタ数, u_{ij} は $0 \le u_{ij} \le 1$ を満たす サンプル \mathscr{X}_i のクラスタ j への帰属度, \mathbf{c}_j はクラスタ jの中心, $\|\cdot\|$ はユークリッド距離,m はm > 1を満 たすパラメータを示す.

$$u_{ij} = \left[\sum_{l=1}^{K} \left(\frac{\|\mathbf{x}_i - \mathbf{c}_j\|}{\|\mathbf{x}_i - \mathbf{c}_l\|}\right)^{2/(m-1)}\right]^{-1}$$
(2)

しかし,帰属度 u_{ij} はサンプル \mathscr{X}_i の力センサの応答 情報のみを用いて導出されたため,亀裂が深い位置で は変状を検出できない可能性が高い.そこで,周囲の サンプルの中で変状検出可能性が高いサンプルに加重 をかけることで,サンプル \mathscr{X}_i の帰属度の予測値を計 算する.サンプル \mathscr{X}_i の帰属度の予測値 h_{ij} は,式(3) で導出する. W_{ik} は,予測値に対する周囲のサンプル の帰属度 u_{kj} の重み, $SS(\mathscr{X}_i)$ は亀裂に対し,サンプル \mathscr{X}_i と同一側にあるサンプルの集合である.なお,サン プル同士を結んだ直線と亀裂が交差しない場合を,亀 裂に対し同一側と判定する.

Defuzzification:

各特徴量ベクトル \mathbf{x}_i のクラスタラベル p_i の決定 $p_i = \arg \max u'_{ii}$

$$h_{ij} = \sum_{k \in SS(\mathscr{X}_i)} W_{ik} \ u_{kj} \tag{3}$$

最後に, Chuang らの手法 [7] に基づき, 帰属度 *u*_{ii} と,周囲のサンプルから導出された帰属度の予測値h_{ii} から,修正帰属度 u'_{ii} を式 (4) で導出する. p, q はパラ メータを示す.

$$u_{ij}' = \frac{u_{ij}^p h_{ij}^q}{\sum_{l=1}^K u_{il}^p h_{il}^q} \tag{4}$$

クラスタ中心の更新は修正帰属度を用いて行い,終 了条件である修正帰属度もしくはクラスタ中心が更新 で2回以上変化しなくなるまで、修正帰属度とクラス タ中心の更新を繰り返す.以上の提案したクラスタリ ングアルゴリズムの処理を Algorithm 1 に示す.

(a) 亀裂とサンプル間距離に基づいた重み付け

(b) サンプル同士の距離に基づいた重み付け 図 5 提案手法の重み付けの概念図

2.7 サンプルの重み付け

式 (3) の重み W_{ik} は, 関数 F_{ik} と関数 G_{ik} の積で決 定される.本提案手法のコンセプトである,亀裂に近 いサンプルほど変状検出可能性が高いため、加重を行 う意図で設計された関数が Fik である. Fik は式 (5) で 導出される. $D_{cr}(\mathscr{X}_i), D_{cr}(\mathscr{X}_k)$ はそれぞれサンプル $\mathscr{X}_i, \mathscr{X}_k$ と亀裂の最短距離, α は定数を示す. 亀裂とサ ンプルの位置関係の模式図を図5(a)に示す. 亀裂から 近傍のサンプル1と亀裂から遠方サンプル2では、サ ンプル1の方が変状検出確率が高いため、 F_{i2} より F_{i1} が大きな重みとなる.ただし、サンプル \mathscr{X}_i が亀裂か ら遠くなるほど、サンプル Xi が変状である可能性が 低下するため、周囲の重み付けの強弱が弱くなる.ま た, $k \in SS(\mathcal{X}_i)$ から, \mathcal{X}_k はサンプル \mathcal{X}_i と亀裂に対 して同一側のサンプルであるため、亀裂の反対側のサ ンプルは重み付けから除外される.

$$F_{ik} = \left(\frac{D_{cr}(\mathscr{X}_i)}{D_{cr}(\mathscr{X}_k)}\right)^{\alpha}$$
(5)

Louhi ら [4] は打音のクラスタリング時のサンプルの 誤検出の低減を目的として,サンプル X_iから一定距 離以下にある各サンプルの帰属度の平均を帰属度の予 測値として平滑化を行った. Louhiら [4]の概念を拡張 し、サンプル同士の距離が近くなるほど、加重を行う 意図で設計された関数が Gik である.これは, 亀裂の 影響を考慮しない場合,近いサンプル同士ほど,同一 のクラスタに属する可能性が高くなるからである. G_{ik} は式 (6) で導出される. $d_{i,k}$ はサンプル \mathscr{X}_i と周辺のサ ンプル \mathscr{X}_k の距離, d_N はサンプル \mathscr{X}_i と周辺のサンプ ルの距離の最小値, σは定数を示す. サンプル同士の 位置関係の模式図を図 5(b) に示す.サンプル1はサン プル2よりサンプル \mathscr{X}_i に近いため, G_{i2} より G_{i1} が大 きな重みとなる.また、サンプル1がサンプル \mathscr{X}_i の最 近傍であるため、 d_{i1} が d_N となる. 関数 F_{ik} と同様に、 亀裂の反対側のサンプルは重み付けから除外される.

$$G_{ik} = \frac{1}{\sqrt{2\pi\sigma}} \exp\left\{-\left(\frac{d_{i,k}}{d_N}\right)^2 / 2\sigma^2\right\}$$
(6)

最後に,重み W_{ik} は式(7)で導出される. W_{ik} は,関数 F_{ik} と関数 G_{ik} の積を $\sum_{k \in SS(\mathbf{x}_i)} W_{ik} = 1$ となるように正規化したものである.

$$W_{ik} = \frac{F_{ik}G_{ik}}{\sum_{l \in SS(\mathbf{x}_i)} F_{il}G_{il}}$$
(7)

3 実験

3.1 実験設定

本研究では、コンクリート構造物の代表的な変状で ある亀裂の検出性能を検証するため、500mm四方の大 きさで、表面中心付近から右手側に向かって15°の角 度の人工的な亀裂があるコンクリート試験体を用いて 実験を行った.コンクリート試験体の寸法を図6に示 す.コンクリート試験体の中央部に亀裂が存在し、そ の右方の赤色の箇所が変状部である.コンクリート端 部の影響を避けるため、インパクトハンマの打叩は外 縁から40mm内側の青色の箇所で行った.

本実験では、事前にインパクトハンマで打叩すべき 箇所をコンクリート表面にグリッドになるよう記入し、 その点を目標位置としてインパクトハンマで打叩する ことで、サンプル位置の特定を行った. 亀裂位置とサ ンプル位置は、カメラ画像のコンクリート試験体の外 縁枠を基準に、カメラ画像の亀裂位置と事前に記入し たインパクトハンマの打叩位置を対応させた. 実際の コンクリート試験体を図7(a),試験体のエッジ画像を 図7(b)に示す.実験では、インパクトハンマで本試験 体の225点(変状部:105点、健状部:120点)を打叩

(a) コンクリート試験体 (b) 試験体のエッジ画像
図 7 コンクリート試験体と試験体のエッジ画像

し、力センサの応答を計測した. インパクトハンマは PCB 社製の 086C03 (ハンマ重量 160 g、ハンマ長 216 mm、ハンマヘッド径 15.7 mm)を使用した. サンプ リング周波数は 105,469Hz とした. 各種パラメータは、 $m = 2, p = 1, q = 1.3, \alpha = 6, \sigma = 0.8$ とした.

3.2 実験結果と考察

提案手法と従来手法を用いたクラスタリング結果と 正解ラベルを図8に示す.図8中の円はハンマの打叩位 置を示しており,丸が変状部を,白抜きの丸が健状部を 表す.変状部の左側にコンクリート表面上の亀裂が存 在し,右側ほど亀裂が深くなる.提案手法と従来手法 の検出精度の結果を表1に示す.FCMのみ[5]は通常 のFuzzy C-Meansのみを使用した手法,従来手法[4] は一定距離以下の周辺のサンプルと平滑化を行う手法, 関数 G のみは亀裂の位置情報を使用せず,サンプル同 士の距離に応じて重みを決定する手法,関数 F+従来 手法[4]は一定距離以下のサンプルに,亀裂からの距離 に応じた重みを付加する手法,提案手法(関数 F+G) は,本研究の提案手法である.

手法	サンプル位置	亀裂位置	Rand Index	Accuracy	Precision	Recall
FCM のみ [5]	なし	なし	0.629	75.6~%	75.0~%	71.4~%
従来手法 [4]	あり	なし	0.684	80.4~%	94.2 ~%	61.9~%
関数 G のみ	あり	なし	0.684	80.4~%	90.7~%	64.8~%
関数 F+従来手法 [4]	あり	あり	0.823	90.2~%	91.9~%	82.3~%
提案手法(関数 F+G)	あり	あり	0.852	92.0 %	88.5~%	95.2~%

表 1 提案手法と従来手法の検出精度比較

表1から、クラスタリングアルゴリズムの性能指標 である Rand Index で比較した際,提案手法が最大で あり,最も優れた手法であることがわかる.また提案 手法と従来手法の Accuracy, Precision, Recall を比較 した場合, Accuracy と Recall は提案手法がそれぞれ 11.6%と33.3%, Precision は従来手法が5.7%優れてい る. Precision と Recall はトレードオフの関係にある指 標である.しかし,事故発生の予防を目的とする実際 の点検においては,変状部の見落としがないことが重 要であるため,本研究では Recall を Precision より重 要な指標として扱う.そのため, Precision では劣るが, Recall と Accuracy で勝る提案手法が従来手法より点 検手法として適している.

亀裂の深さに応じた各手法毎の変状検出率を図9に 示す. 亀裂が最も深い53.6mmの箇所において,FCM のみは約33.3%,従来手法は20%の変状検出率に対し, 提案手法では80%の変状検出率である.他の深さの亀 裂においても,提案手法がFCMのみと従来手法より 検出率が高いため,提案手法による亀裂深部の検出率 の改善が確認できた.亀裂の深部において,従来手法 がFCMのみの検出率に劣る理由としては,従来手法で は周囲のサンプルと平滑化を行うために,亀裂が深い 箇所では健常と誤検出された周囲のサンプルの影響を 受けるからだと考えられる.提案手法では,亀裂に近 く変状検出可能性が高いサンプルを重視するため,健 常と誤検出されたサンプルの影響を低減している.

最後に、性能を向上させた提案手法の要因について 考察する.サンプル同士の距離に応じて重みが減衰す る関数 G は、一定距離以下のサンプルを同一の重みと して扱う従来手法を拡張した手法であるため、亀裂位 置を考慮した関数 F は関数 G だけでなく,従来手法 とも組み合わせることができる.表1の従来手法と関 数 F+従来手法の比較から,関数 F が従来手法に比べ Rand Index を約 0.14 向上させたことがわかる.また 亀裂の位置情報を使用していない関数 Gのみと、従来 手法では Rand Index は同値である.しかし提案手法 である関数Gと関数Fの組み合わせは,従来手法と関 数 F を組み合わせた場合と比較して, Rand Index を 約 0.03 向上させた. この理由としては, 関数 G は従 来手法に比べ広範囲のサンプルの影響を考慮するため, 左右でクラスタが異なる亀裂の近辺では精度が低下し やすいからだと考えられる. 実際, 従来手法では亀裂 付近の健状部に1点の誤検出があるのに対し, 関数G のみでは3点の誤検出がある.一方で,亀裂位置を考 慮した場合には、上記の短所が解決されるため、関数 Fとの組み合わせで精度が上がると考えられる.以上 から, 関数 F による亀裂位置の考慮が精度改善に大き く寄与しており、関数 F と関数 G を組み合わせること

で検出精度がさらに改善すると結論付けられる.

4 結論

本研究では、コンクリート深部の亀裂の検出精度向 上を目的として、カメラ画像から取得したコンクリー ト表面の亀裂位置とサンプル位置を考慮した、力セン サを用いた変状検出手法を提案した.実験の結果から、 提案手法による亀裂深部における検出率の改善が確認 できた.また検出率の改善には、亀裂位置の考慮が大 きく寄与していることも確認できた.

今後の展望としては、今回は亀裂が複数ある場合を 考慮していないため、複数の亀裂に対応可能なアルゴ リズムに拡張することが挙げられる.また、実用化に 向けて、サンプル位置と亀裂位置をスムーズに対応さ せる手法の構築が求められる.

謝辞

本研究の一部は,一般財団法人日本建設情報総合センター(JACIC)の支援を受けた.

参考文献

- [1] 内閣府: 戦略的イノベーション創造プログラム (SIP) インフラ維持管理・更新・マネジメント技 術研究開発計画, 2018.
- [2] 園田佳巨,川端健太,別府万寿博,福井雄気:"打 音データを用いたコンクリート内部欠陥の評価に 関する基礎的考察",構造工学論文集 A, vol. 57, pp. 802–811, 2011.
- [3] G. Zhang, R. S. Harichandran and P. Ramuhalli: "Detection of Delamination in Concrete Bridge Decks Using Mfcc of Acoustic Impact Signals," Review of Progress in Quantitative Nondestructive Evaluation Volume 29, vol. 1211, no. 1, pp. 639–646, 2010.
- [4] J. Y. Louhi Kasahara, H. Fujii, A. Yamashita and H. Asama: "Fuzzy Clustering of Spatially Relevant Acoustic Data for Defect Detection," IEEE Robotics and Automation Letters, vol. 3, no. 3, pp. 2616–2623, 2018.
- [5] 湊真司、ルイ笠原純ユネス、禹ハンウル、藤井浩光、山下淳、淺間一:"カセンサを用いたコンクリート構造物の変状検出",第36回日本ロボット学会学術講演予稿集,RSJ2018AC3F1-04, pp. 1–3, 2018.
- [6] P. Giri and S. Kharkovsky: "Detection of Surface Crack in Concrete Using Measurement Technique With Laser Displacement Sensor," IEEE Transactions on Instrumentation and Measurement, vol. 65, no. 8, pp. 1951–1953, 2016.
- [7] K. S. Chuang, H. L. Tzeng, S. Chen, J. Wu and T. J. Chen: "Fuzzy C-Means Clustering with Spatial Information for Image Segmentation," Computerized Medical Imaging and Graphics vol. 30, no. 1, pp. 9–15, 2006.