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1. Introduction
In recent years, 3D simultaneous localization and map-

ping (SLAM) has played an important role in the automa-
tion of mobile robots in global navigation satellite sys-
tem (GNSS) denied environments such as tunnel, under-
ground, indoor, and forest environments.

Light detection and ranging (LiDAR) SLAM is one of
the robust and accurate methods for solving SLAM prob-
lems, as the 3D structural information of the environments,
which is measured with LiDAR, can be directly used to
construct the 3D map. However, structure-less environ-
ments, such as corridors, vast planes, and long tunnels,
force LiDAR SLAM to degenerate, as most of the LiDAR
SLAM [1–3] solely relies on measured structural informa-
tion. On the other hand, visual SLAM [4–6], which relies
on textural and color information from images, not struc-
tural information, has the potential to solve these structural
degenerate issues. However, visual SLAM easily suffers
with texture-less, lightening changing environments and
aggressive motion of the SLAM agent.

To solve these issues originating from LiDAR and vi-
sual SLAM, various LiDAR-visual SLAM [7–11] have
been proposed. However, as most of these methods rely on
maximum a posteriori (MAP) fusion of the information of
each sensor, the entire system can experience failure when
either method degenerates largely. On the other hand, a
hard-switching based method [12] between LiDAR and vi-
sual SLAM has been proposed to deal with each sensor
degenerate environment. Although this method can have
potential to solve the situation with the failure of either
sensor, the entire system severely relies on thresholds for
the switch.

To address the above problems, in this paper, we pro-
pose a novel LiDAR-visual-inertial SLAM using a hybrid
method between MAP-based and hard-switching sensor
fusion method. The main contributions of our method are
as follows:

• Active factor graph: Active factor graph is newly
proposed to fuse MAP-based and hard-switching-
based method. Each factor is selectively connected
or disconnected along with switching conditions.

• Degeneracy-aware optimization: To deal with
structurally degenerate situations, the optimization of
feature-to-map matching will vanish along directions
of degenerate degree of freedom (DOF).

2. Proposed Method
2.1 System Overview

The overview of the proposed method is described in
Fig. 1. The proposed approach consists of a visual iner-
tial odometry (VIO) module, 3-D feature extraction, active
factor graph, and degeneracy-aware optimization.

Firstly, VINS-MONO [6] is used for our VIO module to
derive VIO results and visual residual that contains visual-
inertial bundle adjustment formulation. Then, LOAM [1]
is used for feature extraction to extract plane features and
LiDAR residual calculated as point-to-plane distance. Af-
ter the initial guess is selected between VIO and IMU
preintegration [13] along with degeneracy detection re-
sults, an active factor graph is constructed for sliding win-
dow optimization. Finally, degeneracy-aware optimiza-
tion is performed to selectively optimize only directions
of well-conditioned DOF.

2.2 Structural Degeneration Detection
To detect structurally degenerate situations, we utilize a

method as proposed in [14], which evaluates the distribu-
tion of LiDAR point cloud data based on the eigenvalues
of the Hessian matrix used in scan-to-map matching.

Following [1, 2], the scan-to-map matching cost fl can
be defined as follows:

fl(x) = dp, (1)

where x is a 6-DOF pose of SLAM agent, and dp is a
vector stacked with dp, which represents the distances be-
tween a planar feature of current scan pp

j and correspond-
ing map planar features pp

i,1, pp
i,2 and pp

i,3. Note that dp is
denoted as follows:

dp =
∥(pp

j − pp
i,1)((p

p
i,1 − pp

i,2)× (pp
i,1 − pp

i,3))∥
∥(pp
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i,3)∥

. (2)

As a result, the nonlinear optimization eq. (1) is solved
using Gauss-Newton as follows:

δx = −Hl
−1Jl

⊤dl, (3)

where Jl = ∂fl
∂x denotes the Jacobian matrix, and Hl =

Jl
⊤Jl denotes the Hessian matrix. If the minimum eigen-

value of Hl is smaller than a predefined threshold, our
system treats the current state as structurally degenerate.
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Fig.1: The system structure of proposed method

Algorithm 1 Active Factor Graph

Input: Prior status Tk−1, Hl in eq. (3), status of LO Sl,

status of VIO Svio, differential state of VIO δTv
k−1,k,

differential state of IMU pre. δTi
k−1,k, LiDAR resid-

ual factor Fl
k, and visual residual factor Fv

k

Output: Active factor graph Ff
k

1: if Sl == 1 //Well conditioned LO then

2: Finit
k−1,k = Tk−1 ⊞ δTi

k−1,k

3: Insert Finit
k−1,k and Fl

k to Ff
k

4: else if Sl == 0 ∨ Svio == 1

//Degenerate LO & Well conditioned VIO then

5: Finit
k = Tk−1 ⊞ δTv

k−1,k

6: Insert Finit
k−1,k, Fv

k, and Fl
k to Ff

k

7: else if Sl == 0 ∨ Svio == 0

//Degenerate LO & Failure of VIO then

8: Finit
k = Tk−1 ⊞ δTi

k−1,k

9: Insert Finit
k−1,k and Fl

k to Ff
k

10: end if

11: return Ff
k

When structural degeneration is detected, the state of Li-
DAR odometry, denoted as Sl, is set to “0” (indicating
structural degeneration; otherwise, it is set to ”1”).

2.3 Visual Failure Detection
The number of tracked features and positional changes

are used to detect visually failed situations as proposed
in [6]. When visual degeneration is detected, the state of
VIO, denoted as Svio, is set to “0” (indicating visual de-
generation; otherwise, it is set to ”1”).

2.4 Active Factor Graph
To mitigate degenerate situations involving either indi-

vidual sensors or all sensors, we propose an active factor
graph. The active factor graph utilizes three types of fac-
tors: the initial guess factor, the LiDAR residual factor,

and the visual residual factor. The factor graph is actively
constructed along with Sl and Svio.

When LO is well-conditioned, the initial guess, prop-
agated with IMU preintegration and LiDAR odometry, is
used for the initial guess factor. Moreover, only the Li-
DAR residual in eq. (1) and the initial guess factor are used
to construct the factor graph, excluding the visual resid-
ual. Note that visual odometry is relatively less accurate
compared to LiDAR odometry in well-structured environ-
ments, which makes the multimodal fusion less accurate
in such environments.

When LO is degenerate and VIO is well-conditioned,
the VIO result, propagated at the IMU rate, is used for the
initial guess factor. Furthermore, both the LiDAR and vi-
sual residuals are inserted into the factor graph to help es-
cape from LiDAR degeneration. Note that visual residual
is denoted in [6].

When LO is degenerate and VIO experiences failure si-
multaneously, the IMU preintegration value is utilized for
the initial guess factor. The LiDAR residual and initial
guess factor are then utilized to construct the factor graph.
In this case, the initial guess factor has a significant impact
on the directions of the degenerate DOF in optimization
process, reducing drift even in structurally and visually de-
generate situations.

2.5 Degeneracy-aware optimization

After constructing the factor graph, the sliding window
optimization considering the directions of structurally de-
generate degrees of freedoms (DOFs) is formulated as fol-
lows:

δx = argmin
δx

(||δx+ (UΛpU
−1)

−1
Jl

⊤dl||2

+||δx+ (Hv
−1Jv

⊤dv)||2) + ||δx− δx0||2.
(4)

Here, Λp denotes the matrix with eigenvalues removed
corresponding to degenerate DOFs from Λ, where eigen-
decomposition of Hl is UΛU−1. Moreover, δx0 is a vec-
tor of initial guesses, Jv denotes the Jacobian matrix of
VIO, and Hl = Jl

⊤Jl denotes the corresponding Hessian
matrix. Note that VIO constraints in eq. (4) are used only



Table1: Comparison of Absolute Translational Errors (Maximum, RMSE) on Prepared Datasets. The units are in meters.

Dataset Fast rotate Plane Farm Mine Handheld Multi Floor Long Corridor

Max RMSE Max RMSE Max RMSE Max RMSE Max RMSE Max RMSE Max RMSE

LOAM 1.41 0.44 - - - - 0.60 0.28 - - 17.9 10.6 25.6 12.6
LIO-SAM 0.72 0.21 - - - - 5.84 2.33 - - - - 17.6 7.64
VINS-MONO - - 1.17 0.41 - - 0.65 0.29 21.4 10.3 12.8 6.30 23.8 11.8
LVI-SAM 8.82 1.82 1.82 0.69 28.8 5.75 2.69 0.23 3.27 1.23 - - 18.4 8.7
R2LIVE 1.67 0.64 19.5 8.53 8.52 4.21 3.95 2.58 - - 27.2 14.6 - -
R3LIVE 10.1 6.43 9.01 5.84 58.6 34.7 6.70 4.13 - - 5.38 3.08 15.5 7.87
FAST-LIVO 11.3 7.12 - - 51.2 26.5 - - - - - - - -
Proposed 0.26 0.15 1.47 0.63 1.69 0.70 0.51 0.26 3.02 1.30 5.72 2.13 10.5 4.77

“-” denotes the failure of localization.

(a) Farm (b) Mine

(c) Long Corridor

Fig.2: Examples of resulting maps using proposed method.

in structurally degenerate and visually well-conditioned
situations to avoid LiDAR odometry degeneracy.

3. Experiments
The proposed method is evaluated using both simu-

lated and real-world datasets. The simulated datasets
are referred to as Fast Rotate, Plane, Farm, and Mine,
which is simulated with ROS Gazebo simulator and sen-
sor suite containing a Velodyne VLP-16 with 10 Hz,
640 × 480 pinhole-based camera with 60 Hz, 9-axis IMU

with 200 Hz. The real-world datasets are referred to as
Handheld [8], Multi Floor, and Long Corridor [15]. Com-
pared methods are state-of-the-art LiDAR [1,2], visual [6],
LiDAR-visual [8–11] SLAM. The benchmarking results
are shown in Table 1. Moreover, The resulting maps using
the proposed method are shown in Fig. 2. Overall, the pro-
posed method achieved the lowest root mean square error
(RMSE) compared to other LiDAR-visual SLAM meth-
ods, except for the Handheld dataset, where our method
remains competitive with the best results among them.



In the Fast Rotate and Farm dataset, visual SLAM expe-
rienced failure due to aggressive motion, leading to degra-
dation in the performance of the compared LiDAR-visual
SLAM methods. In contrast, our method remained robust
in visually degenerate scenes, thanks to the active factor
graph and degeneracy-aware optimization.

In the Plane, Farm, Mine, and Handheld datasets, Li-
DAR SLAM experienced structural degeneration due to
vast plane or corridor-like structures. Our method is robust
in such scenes by using VIO results as the initial guess and
fusing LiDAR and visual measurements in the active fac-
tor graph. Note that although LVI-SAM outperformed the
proposed method in the Handheld dataset, the degenera-
tion regions in the Handheld dataset are relatively short. If
the degeneration of LiDAR SLAM is prolonged, as seen
in the Plane and Farm datasets, LVI-SAM can also experi-
ence degeneration.

In the Multi Floor and Long Corridor datasets, both Li-
DAR and visual SLAM experienced degeneration simul-
taneously due to high velocity and corridor-like structures
in the Long Corridor dataset, and texture-less white walls
and stairs in the Multi Floor dataset. Our method re-
mained robust even in both sensors’ degenerate situations
by using degeneracy-aware optimization, which conducts
feature-to-map matching only along the directions of well-
conditioned DOFs, while the degenerate DOFs are deter-
mined using the initial guess derived from IMU preinte-
gration.

4. Conclusion
In this paper, we propose a novel LiDAR-visual-inertial

SLAM system designed to be robust and accurate in struc-
turally and visually degenerate environments. To tackle
the limitations of MAP-based and hard switching-based
sensor fusion, the active factor graph, wherein factors
are selectively connected based on degeneracy or fail-
ure detection, is proposed. Furthermore, to enhance
optimization stability in structurally degenerate environ-
ments, we propose degeneracy-aware optimization. In our
degeneracy-aware optimization, feature-to-map matching
is performed only along well-conditioned directions and
selectively fuse visual residuals to solve structural degen-
eracy. Our method was thoroughly tested across various
environments, including those with both structural and vi-
sual challenges. Through experimental evaluations, our
approach demonstrates a high level of robustness and ac-
curacy, surpassing state-of-the-art LiDAR visual SLAM
methods.

As a future work, for enhancement of the VIO mod-
ule, we will integrate sparse depth of LiDAR into the VIO
module to achieve fast initialization and enhanced accu-
racy, which is also switchable.

5. Acknowledgement
This research was conducted under the university-

corporate collaboration agreement between Kubota Cor-
poration and the University of Tokyo.

References
[1] Ji Zhang and Sanjiv Singh：“LOAM: Lidar Odometry and

Mapping in Real-time” Proceedings of the Robotics: Science
and Systems, vol. 2, no. 9, pp. 1–9, 2014.

[2] Tixiao Shan, Brendan Englot, Drew Meyers, Wei Wang,
Carlo Ratti, and Daniela Rus：“LIO-SAM: Tightly-coupled
Lidar Inertial Odometry via Smoothing and Mapping” Pro-
ceedings of the 2020 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), pp. 5135–5142,
2020.

[3] Wei Xu, Yixi Cai, Dongjiao He, Jiarong Lin, and Fu Zhang：
“FAST-LIO2: Fast Direct LiDAR-inertial Odometry” IEEE
Transactions on Robotics, vol. 38, no. 4, pp. 2053–2073,
2022.

[4] Raul Mur-Artal, Jose Maria Martinez Montiel, and Juan D
Tardos：“ORB-SLAM: A Versatile and Accurate Monocular
SLAM System” IEEE Transactions on Robotics, vol. 31, no.
5, pp. 1147–1163, 2015.

[5] Jakob Engel, Vladlen Koltun, and Daniel Cremers：“Direct
Sparse Odometry” IEEE Transactions on Pattern Analysis
and Machine Intelligence, vol. 40, no. 3, pp. 611–625, 2017.

[6] Tong Qin, Peiliang Li, Shaojie Shen：“VINS-Mono: A Ro-
bust and Versatile Monocular Visual-Inertial State Estimator”
IEEE Transactions on Robotics, vol. 34, no. 4, pp. 1004–
1020, 2018.

[7] Ji Zhang and Sanjiv Singh：“Visual-Lidar Odometry and
Mapping: Low-Drift, Robust, and Fast” Proceedings of the
2015 IEEE International Conference on Robotics and Au-
tomation (ICRA), pp. 2174–2181, 2015.

[8] Tixiao Shan, Brendan Englot, Carlo Ratti, and Daniela Rus：
“LVI-SAM: Tightly-coupled Lidar-Visual-Inertial Odome-
try via Smoothing and Mapping” Proceedings of the 2021
IEEE International Conference on Robotics and Automation
(ICRA), pp. 5692–5698, 2021.

[9] Jiarong Lin, Chunran Zheng, Wei Xu, and Fu Zhang：
“R2LIVE: A Robust, Real-time, LiDAR-Inertial-Visual
tightly-coupled state Estimator and mapping” IEEE Robotics
and Automation Letters, vol. 6, no. 4, pp. 7469–7476, 2021.

[10] Jiarong Lin and Fu Zhang：“R3LIVE: A Robust, Real-
time, RGB-colored, LiDAR-Inertial-Visual tightly-coupled
state Estimation and mapping package” Proceedings of the
2022 International Conference on Robotics and Automation
(ICRA), pp. 10672–10678, 2022.

[11] Chunran Zheng, Qingyan Zhu, Wei Xu, Xiyuan Liu, Qizhi
Guo, and Fu Zhang：“FAST-LIVO: Fast and Tightly-coupled
Sparse-Direct LiDAR-Inertial-Visual Odometry” Proceed-
ings of the 2022 IEEE/RSJ International Conference on In-
telligent Robots and Systems (IROS), pp. 4003–4009, 2022.

[12] Shehryar Khattak, Huan Nguyen, Frank Mascarich, Tung
Dang, and Kostas Alexis：“Complementary Multi–Modal
Sensor Fusion for Resilient Robot Pose Estimation in Sub-
terranean Environments” Proceedings of the 2020 Interna-
tional Conference on Unmanned Aircraft Systems (ICUAS),
pp. 1024–1029, 2020.

[13] Christian Forster, Luca Carlone, Frank Dellaert, and Da-
vide Scaramuzza：“On-Manifold Preintegration for Real-
Time Visual-Inertial Odometry” IEEE Transactions on
Robotics, vol. 33, no. 1, pp. 1–21, 2016.

[14] Ji Zhang, Michael Kaess, and Sanjiv Singh：“On Degen-
eracy of Optimization-Based State Estimation” Proceedings
of the 2016 IEEE International Conference on Robotics and
Automation (ICRA), pp. 809–816, 2016.

[15] Shibo Zhao, Yuanjun Gao et al.：“SubT-MRS Dataset:
Pushing SLAM Towards All-weather Environments” arXiv
preprint arXiv:2307.07607, 2023.


