# 2対の全天球カメラとクロスラインレーザによる相対姿勢推定に基づく 光切断法を用いた3次元計測

# Cross Line Structured via Mutual Pose Estimation of Two Sets of Spherical Camera and Cross Line Laser

東京大学 〇朝倉 友和,伊賀上 卓也,安 琪,山下 淳

## 1. 序論

3次元計測は、農業[1]や自動運転 [2]など様々な分野で利用され、 建設現場 [3]やインフラ点検の現場でも取り入れられている. 高度 経済成長期に整備された社会インフラは老朽化が進行し、維持管理 を行うためには定期的な点検が必要である.全国の橋梁の老朽化も 深刻であり、次回点検までに措置が必要と判断された橋梁は約7万 橋存在する [4].国土交通省では3Dモデルの作成により施工・維持 管理プロセスの効率化・高度化を図る取り組みである、Construction Information Modeling (CIM)を推進している.加えて、今後の人口 減少による労働力の低下を鑑みると、省人化された3次元計測法の 確立が急務である.

橋梁計測の省人化のためにロボットの活用が期待されており、中 でも Unmanned Aerial Vehicle (UAV)を橋梁の3次元計測へ活用 する研究が行われている.渡辺らは LiDAR-SLAM 機構を搭載した ドローンを用いて橋梁の3次元計測を行った [5].LiDAR-SLAM に よる計測は、得られる点群間隔が狭いため高密度なデータが取得で き、周囲の明るさに影響されず夜間でも行うことができる利点があ る.しかし LiDAR 機構は高重量であるため、運用にはペイロード の大きい大型の UAV が必要となり、落下時の危険性が高まり橋梁 下部の狭い空間を通ることが難しくなる.3次元モデルを生成する 他の技術として、Structure from Motion (SfM)があり、測定に小型 カメラを用いるため運用上利便性が高く、小型の UAV を利用でき る [6].しかし SfM は画像内の特徴点を基準として撮影した位置・ 姿勢を求め3次元モデルを復元するため、コンクリート平面で構成 される特徴点の少ない橋梁には不向きである.

特徴点の少ない環境での3次元計測手法として光切断法がある. Igaue et al. は、2台のカメラを用いたレーザ光の2D-3Dマッチング によりトンネルの3次元計測とカメラの位置姿勢推定を行った[7]. 3次元計測を行う断面計測装置のレーザを固定したカメラにより観 測することで2次元点群を取得し、2次元点群と3次元点群マッチ ングを行うことで断面計測装置の位置姿勢を推定した.

RGB カメラとレーザのみを用いるこの手法はUAV への高い可搬 性があり、また計測にテクスチャを用いないため特徴点の少ない対 象でも3次元計測が可能である.しかしリングレーザの形状をカメ ラで観測し位置姿勢推定に用いることからトンネルのような断面 が閉じた長尺物以外の対象の計測は検討されておらず、計測方向が 1方向に制限される.橋梁等平面で構成される対象を計測するには、 断面形状の特徴に依存しない位置姿勢推定法が必要である.

## 2. 提案手法

### 2.1 要求されるカメラとレーザの特性

平面で構成される対象の計測には、断面形状の特徴によらない位置姿勢推定法が求められる.計測装置の位置姿勢推定は3次元計測において計測点を統合する際に重要である.先行研究[7]ではトン

ネル断面にリングレーザを照射することで得られたレーザ形状の 特徴を用い、固定点から観測したレーザ画像とのマッチングを行い 計測装置の位置姿勢を推定した.平面計測の際は、レーザのマッチ ングによって得られる位置姿勢の不定性を減らすことが必要であ り、位置姿勢パラメータを更新する情報がより多いことが望ましい. 2 台の断面計測装置を用意しそれぞれに観測機能と3次元計測機能 を持たせ、マッチングする点群の組数を増やすことができれば、パ ラメータの更新情報をより多く得られる.1台のカメラが両方の役 割を担うには、別地点にある2点のレーザを捉える広い視野角が必 要である.

また,平面にリングレーザを照射する際はトンネル等の長尺物を 計測する場合と異なり,特徴的なレーザ形状を得ることが出来ず照 射面は1本の直線となる.直線情報だけでは位置姿勢推定時に並進 方向と回転方向の不定性が生じるため,これを解消する形状のレー ザを使用する必要がある.クロスラインレーザは十字型の形状を持 っため,レーザを照射する断面計測装置の位置姿勢6自由度の内, 適切な初期値を与えることにより並進1自由度以外を定めることが できる.



#### 2.2 提案手法の概要

図1 提案手法の概略

本手法では、2台の全天球カメラとクロスラインレーザを用いた 点群マッチングによる位置推定を提案する.図1に示すように3次 元計測を行う全天球カメラとクロスラインレーザを組み合わせた 計測装置を2台用意し、光切断法による3次元計測ともう一方の装 置のレーザ観測を同時に行い、点群のマッチングから計測装置の位 置姿勢を推定する.

#### 2.3 点群マッチング手法及び位置姿勢推定法の詳細

先行研究[7] は点群のマッチングを行うため、剛体変換において 回転と並進を推定する Rigit Coherent Point Drift を拡張し、射影変換 における回転行列と並進ベクトルの推定をおこなった.本研究では この手法を 2 つの全天球カメラを用いるシステムにさらに拡張す る.



図2のように 断面計測装置で得られた3次元点群を回転行列 R, 並進ベクトル t を用いて観測カメラの座標系に座標変換し、ノル ムを1とすることで点群を観測カメラの球面上に投影する.この点 群と断面計測装置のレーザを観測することで得られた点群を,球面 座標系で EM アルゴリズムに基づいた最尤推定によりマッチング し, R 及び t を最適化する.1 つ目の断面計測装置のカメラを $S_1$ , 得られた3次元点群を $Y_{S_1} = \{y_{S_1,m_1} \in \mathbb{R}^{3\times 1}, m_1 = 1, 2, \cdots, M_1\},$ 他方の計測装置のレーザを観測した点群を $X_{S_1} = \{x_{S_1,n_1} \in \mathbb{R}^{3\times 1}, n_1 = 1, 2, \cdots, N_1\}$ とする. $S_1$ 球面に投影された3次元座標  $y_{2,m_2} \epsilon \mu_{S_1,m_2}$ と表すとき,球面座標系への変換は以下のように表さ れる.

$$\boldsymbol{\mu}_{S_1,m_2} = \frac{{}^{1}\mathbf{R}_2 \ \mathbf{y}_{S_2,m_2} + {}^{1}\mathbf{t}_2}{\left|{}^{1}\mathbf{R}_2 \ \mathbf{y}_{S_2,m_2} + {}^{1}\mathbf{t}_2\right|} \qquad (1)$$
$$\boldsymbol{\mu}_{S_2,m_1} = \frac{{}^{2}\mathbf{R}_1 \ \mathbf{y}_{S_1,m_1} + {}^{2}\mathbf{t}_1}{\left|{}^{2}\mathbf{R}_1 \ \mathbf{y}_{S_1,m_1} + {}^{2}\mathbf{t}_1\right|} \qquad (2)$$

座標変換の際,  ${}^{1}\mathbf{R}_{2}$ ,  ${}^{2}\mathbf{R}_{1}$ ,  ${}^{1}\mathbf{t}_{2}$ ,  ${}^{2}\mathbf{t}_{1}$ の関係は  ${}^{2}\mathbf{R}_{1} = {}^{1}\mathbf{R}_{2}^{-1}$ ,  ${}^{2}\mathbf{t}_{1} = -{}^{1}\mathbf{R}_{2}^{-1}{}^{1}\mathbf{t}_{2}$  と表わせる.

最小化する負の対数尤度  $E(\mathbf{p}, \sigma^2)$ は以下である.

 $\arg_{\mathbf{p}} \min \{ -E_1(\mathbf{x}, \mathbf{y}) - E_2(\mathbf{x}, \mathbf{y}) \} \quad (3)$ 

点群のマッチングからは位置姿勢パラメータの更新ベクトルを 算出する. M ステップでは2次微分により高速な最適化が可能であ るニュートン法により計測装置の位置姿勢パラメータ p を更新す る.

#### 2.4 マッチングによる3次元点群の座標系統合

R, t が推定されたことで2 つの断面計測装置で得られた3 次元 点群が1つの全天球カメラの座標系に統合できる. 統合する座標系 をもつ全天球カメラの計測装置の位置を固定し,他方の計測装置を 移動させることで,計測対象平面の全体計測が可能である.

#### 3. 実験

屋内実験の様子を図3に示す.全天球カメラのTHETAX(RICOH) とクロスラインレーザをアルミフレームに固定した装置を2組配置 した.レーザを照射したときと照射していないときの差分画像を取 得し,画像からレーザを抽出した. 屋外実験の様子を図4に示す. 模擬トンネルの断面にクロスライ ンレーザを照射し,全天球カメラで撮影し,3次元計測を行う実験 を行った.



図3 レーザ光による屋内壁面の3次元座標の計測



図4 レーザ光によるトンネル壁面の3次元座標の計測

### 4. 結論

本論文では、2組の全天球カメラとクロスラインレーザを用いた 相互位置推定に基づく光切断法の計測断面統合による3次元計測手 法を提案した.

# 謝辞

本研究の一部は JSPS 科研費 22K18826 の助成を受けたものである.

#### 参考文献

- Lin, G., Tang, Y., Zou, X. & Wang, C. (2021) Three-dimensional reconstruction of guava fruits and branches using instance segmentation and geometry analysis. Computers and Electronics in Agriculture, 184, 106–107.
- [2] Arnold, E., Al-Jarrah, O.Y., Dianati, M., Fallah, S., Oxtoby, D. & Mouzakitis, A. (2019) A survey on 3D object detection methods for autonomous driving applications. IEEE Transactions on Intelligent Transportation Systems, 20(10), 3782–3795.
- [3] Chen, M., Tang, Y., Zou, X., Huang, K., Li, L. & He, Y. (2019) Highaccuracy multi-camera reconstruction enhanced by adaptive point cloud correction algorithm. Optics and Lasers in Engineering, 122, 170–183.
- [4] 国土交通省 (2023): "令和五年度国土交通省白書", 223-224.
- [5] 渡辺豊(2020): "橋梁におけるドローンと 3D データ活用の 最前線", 土木学会 第 23 回 橋に関するシンポジウム論文報 告集,42-48.
- [6] 小花和宏之,早川祐,ゴメス クリストファー. (2014): "UAV 空撮と SfM を用いたアクセス困難地の 3D モデリング",国 立情報学研究所, 35(3), 283–294.
- [7] Takuya, I., Toko, H., Hiroshi, H., Miro, I., Kenichi, Y., Satoshi, Y., Takashi, Y., Hajime, A., & Atsushi, Y. (2023) Cooperative 3D tunnel measurement based on 2D–3D registration of omnidirectional laser light, Journal of Field Robotics, 40(8), 2042–2056.