移動ロボットによる変化検知のための多視点ステレオに基づく 座標整合性を考慮した参照領域抽出

Reference Region Extraction Preserving Positional Consistency

Based on Multi-View Stereo for Change Detection with a Mobile Robot

星井智仁*, 荻原佑介*, 伊賀上卓也*, ルイ笠原純ユネス*,

木下将嘉**, 笠原清司**, 伊藤裕之**, 甲田梨沙**, 田村直**, 加藤俊哉**, 野中史彦**, 神田真司*, 永谷圭司*, 淺間一*, 安琪*, 山下淳*

Tomohito Hoshii*, Yusuke Ogihara*, Takuya Igaue*, Jun Younes Louhi Kasahara*,

Masayoshi Kinoshita**, Seiji Kasahara**, Hiroyuki Ito**, Risa Koda**, Sunao Tamura**,

Toshiya Kato**, Fumihiko Nonaka**,

Shinji Kanda*, Keiji Nagatani*, Hajime Asama*, Qi An* and Atsushi Yamashita*

*東京大学, hoshii@robot.t.u-tokyo.ac.jp **ENEOS 株式会社

概要: 本研究は,移動ロボットを用いた石油精製プラント点検において,変化検知 のために画像対からクロップ画像対を抽出する手法を提案する.プラントでは異常領 域が小さいため,検知対象画像と参照画像から小領域を抽出し,変化検知を行うこと が有用である.そこで,多視点ステレオに基づく3次元座標の整合性を考慮したクロ ップ画像対の抽出を行った.その結果,画像全域でペア決めを行う手法より,クロッ プ画像対が同じ物体を撮像することができ,これにより高精度な変化検知が期待され る.

Keywords: プラント点検,変化検知,深度マップ

1. 序論

燃料油やプラスチックをはじめとする,石油 製品・石油化学製品は我々の日々の生活に欠か せないものである.これらは図1に示すような 石油精製・石油化学プラント(以下,プラント) で精製,製造される.プラント内で装置・機器 の経年劣化などにより発生する様々な異常は, 運転効率の低下や事故を誘発する.そのため, 定期的な点検によりプラント内の異常を早期 に発見し,対策を講じることが不可欠である.

異常の発見のために,現在は運転員による巡回点検が行われている.その際,運転員の目視により,プラント内で生じる配管の腐食,内部 流体の漏洩といった異常を発見する.しかし,熟練者の高齢化や人手不足,巡回点検の技術の 継承が困難であるといった課題があるため,視 覚を用いた点検の自動化が期待されている.

図1 石油精製プラント (ENEOS 株式会社)

視覚的な点検を自動化するために,これまで 固定カメラを用いた異常検知手法が数多く提 案されてきた.例えば Fahimipirehgalin らは固 定された赤外線カメラを用いた,フレーム間の 差分画像を利用した漏洩検知手法を提案し た[1].しかし,点検すべきプラントエリアは

図 2 提案手法の概要

広大であるため, 点検に固定カメラを用いると 多数のカメラが必要となり, 維持管理が困難で ある.

Lawson ら [2] は、カメラを搭載した移動ロ ボットを巡回させることで、用いるカメラの台 数を1台に制限した.そして、撮影された画像 から正常画像を生成する Generative Adversarial Networks (GAN)を訓練し、対象画像の再構 成誤差に基づき異常を検知した.Lawson らは 屋内環境で実証を行っており、鞄の有無やドア の開放といった異常を検知している.しかし、 プラント内の配管に生じる異常は正常画像に 含まれる汚れや錆と類似しており、プラント内 でこの手法を用いると、異常も再現されてしま う懸念がある.

Lawson らが1枚の画像から異常の有無を検 知する手法をとった一方, Shimizu らは移動ロ ボットを用いた変化検知による画像点検手法 を提案した [3]. 変化検知とは、同じ領域につ いて異なる時点で撮影された画像を比較し、変 化があった部分を検知する手法である.したが って,ある画像内に異常が含まれているか判定 するために、同じ箇所を異なる時点で撮影した 画像を用いる. Shimizu らは過去に撮影した異 常を含まない参照動画と,現在撮影した異常を 含む可能性のある対象動画を撮影し,これらか ら異常の判定をニューラルネットワークに基 づき行った、そして、対象画像に対応する参照 画像として,移動ロボットに搭載されたエンコ ーダに基づくカメラ位置姿勢が近く,マッチン グする特徴点が多い画像を選択した.しかしな がら、プラントで生じる異常により変化する画

像内の領域は小さく,画像単位で変化を検知す るのは困難である.

以上から、本研究では、移動ロボットを用い たプラント内巡回点検による変化検知におい て、小さな異常に対応するための手法の構築を 目的とする.

2. 提案手法

2.1.提案手法の概要

プラントで生じる異常により変化する画像 内の領域は小さいため、ペア決めした画像対か ら小さな領域を抽出し、変化検知を行うことが 有用である. Shimizu らの手法による画像単位 でのペア決めに基づき、同一ピクセル座標の窓 枠についてクロップ画像を抽出すると、抽出し たクロップ画像対に含まれる物体に大きなず れが生じてしまう.そこで本研究では図2に示 すように、対象画像のクロップ画像に対応する 3次元座標を計算し、参照画像内の領域を抽出 する. 具体的には、多視点ステレオ (Multi-View Stereo: MVS) [4] に基づくピクセルレベルの深 度マップを生成し、クロップ画像が撮像してい る物体の3次元座標が対応するようにクロッ プ画像を抽出する手法を提案する.

2.2. 深度マップに基づくクロップ画像対の 抽出

参照動画および対象動画からフレームを抽 出し,それらのフレームが撮影されたカメラの 内部パラメータと位置姿勢を Structure from

図 3 Structure from Motion により 推定した撮影位置姿勢と 3 次元点群

Motion (SfM) [5] を用いて推定する. これによ り,図3のように推定したカメラの撮影位置姿 勢および特徴点の3次元点群が取得される. 次 に, SfM を用いて得た情報をもとに, MVS を 用いて深度情報を推定する.

参照動画から抽出した参照画像と,対象動画 から抽出した対象画像,そしてそれぞれのカメ ラの撮影位置姿勢の情報から,以下の手続きで クロップ画像対を抽出する.

- (1)対象画像の抽出領域決定 対象画像内から,抽出したい長方形領域 を選択する.選択した領域を対象クロップ 画像として抽出する.
- (2) 対象クロップ画像の代表値の計算 外れ値の影響を受けにくくするため,対 象クロップ画像の深度の中央値を代表的 な深度の値として用いる.この値を d_t と する.また,対象画像内における対象クロ ップ画像の中心のピクセル座標を (u_t, v_t) とする.
- (3) 投影

図4に示すように、対象画像上のピクセ ル座標 (u_t, v_t) から、ワールド座標系の座 標 (x_w, y_w, z_w) を経由して、対応する参照 画像上のピクセル座標 (u_r, v_r) を計算す る.

対象画像について, ピクセル座標 (u_t, v_t) , 深さ d_t である点について, この 点の対象座標のカメラ座標系における座 標を (x_t, y_t, z_t) とおく. カメラの焦点距離 を f とするとき, この点について式 (1) の関係がある.

図4 投影によるクロップ領域の決定

$$s \begin{pmatrix} u_t \\ v_t \\ 1 \end{pmatrix} = \begin{pmatrix} f & 0 & c_x \\ 0 & f & c_y \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x_t \\ y_t \\ z_t \end{pmatrix}, \quad (1)$$

ここで, $s \in \mathbb{R}$ は定数であり, (c_x, c_y) は対象画像の中央のピクセル座標を表す.また,深度 d_t は,次式 (2) で表される.

$$d_{t} = \left\| \begin{pmatrix} x_{t} \\ y_{t} \\ z_{t} \end{pmatrix} \right\| .$$
 (2)

カメラは $z_t > 0$ の物体を撮像する. そのため, (x_t, y_t, z_t) が求められる.

次に、対象画像のカメラ座標系における 座標 (x_t, y_t, z_t) をワールド座標系の座標 (x_w, y_w, z_w) に変換する.これらの間には式 (3)の関係がある.

$$\begin{pmatrix} x_{t} \\ y_{t} \\ z_{t} \end{pmatrix} = \boldsymbol{R}_{t} \begin{pmatrix} x_{w} \\ y_{w} \\ z_{w} \end{pmatrix} + \boldsymbol{t}_{t} , \qquad (3)$$

ここで, $R_t \in \mathbb{R}^{3\times 3}$, $t_t \in \mathbb{R}^{3\times 1}$ はそれぞれ, 対象画像の撮影位置姿勢を表す回転行列 と平行移動ベクトルである.

次に、この関係を用いて求めたワールド 座標系の座標 (x_w, y_w, z_w) を参照画像のカ メラ座標系における座標 (x_r, y_r, z_r) に変 換する.これらの間には式 (4)の関係があ る.

$$\begin{pmatrix} x_{\rm r} \\ y_{\rm r} \\ z_{\rm r} \end{pmatrix} = \boldsymbol{R}_{\rm r} \begin{pmatrix} x_{\rm w} \\ y_{\rm w} \\ z_{\rm w} \end{pmatrix} + \boldsymbol{t}_{\rm r} , \qquad (4)$$

ここで、 $R_r \in \mathbb{R}^{3 \times 3}$ 、 $t_r \in \mathbb{R}^{3 \times 1}$ はそれぞれ、 参照画像の撮影位置姿勢を表す回転行列 と平行移動ベクトルである.

この関係を用いて求めた参照画像のカ メラ座標系における座標を、参照画像上の ピクセル座標 (u_r, v_r) に射影する.ここで、 式 (5) の関係が成り立つ.

$$k \begin{pmatrix} u_{\rm r} \\ v_{\rm r} \\ 1 \end{pmatrix} = \begin{pmatrix} f & 0 & c_{\chi} \\ 0 & f & c_{y} \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x_{\rm r} \\ y_{\rm r} \\ z_{\rm r} \end{pmatrix},$$
(5)

ここで, $k \in \mathbb{R}$ は定数であり, (c_x, c_y) は対象画像の中央のピクセル座標を表す.

以上より,参照画像上のピクセル座標 (*u*_r, *v*_r)が求まる.

(4) 参照画像のクロップ画像抽出

求めた参照画像上のピクセル座標 (*u_r*, *v_r*)を中心とした,対象画像のクロッ プ画像と同じ大きさの領域を参照画像か ら抽出する.

3. 検証実験

3.1.方法

提案手法の評価のために, ENEOS 株式会社 のプラントで取得した参照動画と対象動画の 組を用いて手法を検証した.

参照動画と対象動画は、プラント内の同一の 配管を同一の経路で撮影した動画である.動画 のフレームレートは 30 fps, 画素数は 7680×4320ピクセルであった.対象動画から0.5 秒おきに、参照動画から0.2秒おきに画像を抽 出した.対象動画からは100枚の対象画像が、 参照動画からは217枚の参照画像の候補が抽 出された.

抽出したそれぞれの画像について, COLMAP[5]を用いて SfM を行い,カメラの 内部パラメータと撮影位置姿勢および 3 次元 点群を推定した.また,提案手法において, OpenMVS [4]を用いて MVS による深度情報 の推定を行った.それぞれの対象画像に対して, 撮影位置間の距離が最も短い画像を参照画像 とした.これにより,100対の画像対を決定し た.これらの画像対に対して同一ピクセル座標 の窓枠によるクロップおよび提案手法を用い てクロップ画像対を抽出した.

(a) 対象画像

(b) 参照画像

図 5 決定された画像対

図6対象画像の深度マップ

対象画像から,480×480 ピクセルの窓枠によって,対象クロップ画像を抽出した.提案手法において,画像の外側の領域が抽出する領域として含まれる場合がある.これらの場合を除外した,8885 対のクロップ画像対について,それぞれ MSE および SSIM [6] を用いた類似度評価を行った.

領域 2

対象クロップ画像

提案手法 図7抽出されたクロップ画像 同一座標の窓枠

3.2.結果と考察

決定された対象画像と参照画像の対の例を 図5に示す.図5(a)に対応する対象画像の例の 深度マップを図6に示す.図6より,対象画像 から深度マップが推定できていることがわか る.図5の画像から、同一ピクセル座標の窓枠 によるクロップおよび提案手法により抽出し たクロップ画像の例を図7に示す.図5のそれ ぞれの画像中の四角形は図7 に示す各クロッ プ画像の領域を表す.図7の右に示す同一ピク セル座標の窓枠によるクロップの例では対象 画像の同一座標の領域を参照画像から抽出し ている.同一ピクセル座標の窓枠によるクロッ プでは、物体の異なる場所がクロップ画像に撮 像された. その一方, 提案手法では, 参照領域 の位置整合性を考慮することにより,同じ物体 が過不足なく撮影されている領域を抽出する ことに成功した.

抽出された領域の対象領域との一致度を定 量的に評価するために, 各手法を用いて抽出し た 8885 対のクロップ画像対について, MSE お 表1 類似度評価

M
28
19
つ
さ
に
-

ついて, ピクセルの R, G, B それぞれの要素 について評価を行い, R, G, B それぞれについ ての類似度の平均値を画像間の類似度とした.

類似度評価を行った結果を表1に示す.表1 内の±の前に書かれている値は各画像間の類似 度の平均値,後に書かれている値は各画像間の 類似度の標準偏差を表す.提案手法について, MSE が小さく, SSIM が大きいことから, 空間 的に近いピクセル領域を抽出したことが示さ れた.提案手法を用いて作成したクロップ画像 対に変化検知を行うことで,変化検知精度の向 上が見込まれる.

4. 結論

本研究では多視点ステレオに基づく深度マ ップから、クロップ画像単位で3次元座標の整 合性をもとにペア決めを行う手法を提案した. 実験では、カメラ位置姿勢とピクセルレベルで の3次元座標を利用した対応付けによりクロ ップ画像間のずれを抑制した.今後の課題は、 提案手法によるクロップ画像対抽出に基づく 変化検知ネットワークの実装および有効性検 証である.

参考文献

- M. Fahimipirehgalin, E. Trunzer, M. Odenweller and B. Vogel-Heuser: Automatic Visual Leakage Detection and Localization from Pipelines in Chemical Process Plants Using Machine Vision Techniques, Engineering, vol. 7, no. 6, pp. 758–776, 2021.
- [2] W. Lawson, E. Bekele and K. Sullivan: Finding Anomalies with Generative Adversarial Networks for a Patrolbot, Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 484–485, 2017.
- [3] S. Shimizu, T. Igaue, J. Y. Louhi Kasahara, N. Yamato, S. Kasahara, H. Ito, T. Daito, S. Tamura, A. Sasamura, T. Kato, S. Kanda, K. Nagatani, H. Asama, Q. An and A. Yamashita: Change Detection in Pipe Image Pairs Extracted from Inspection Videos by Sequential Filtering, Proceedings of the 2024 IEEE/SICE International Symposium on System Integration, pp. 629–636, 2024.
- [4] D. Cernea: OpenMVS: Multi-View Stereo Reconstruction Library, 2020, [online] Available: https://github.com/cdcseacave/openMVS
- [5] J. L. Schönberger and J.-M. Frahm: Structure-from-Motion Revisited, Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition, pp. 4104–4113, 2016.
- [6] Zhou Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli: Image Quality Assessment: from Error Visibility to Structural Similarity, IEEE Transactions on Image Processing, vol. 13, no. 4, pp. 600–612, 2004.