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Abstract: In Industrial Anomaly Detection (IAD), The existing methods can generate anomaly scores, segmentation maps, and
can interact with users about detetected anomalies. However, they cannot provide descriptions of the designated anomaly in an
input image, making it challenging for users to interpret to improve manufacturing processes. To overcome these limitations,
we propose a method that can output descriptions of the designated anomaly area. Specifically, we constructed a multi-modal
IAD dataset and then enhanced the existing model. The evaluation results show that our method improves IAD accuracy by
52.37% compared to the existing VLM in our test scenario.

1. Introduction
Industrial Anomaly Detection (IAD) has made significant

progress, including feature embedding-based methods1), 2)

and reconstruction-based methods1), 3), 4) . These methods can
generate an anomaly score and a segmentation map for each
sample.

Recently, methods5), 6) that can interact with users about
anomalies were proposed. They utilize Vision and Language
Models (VLM), which have various abilities to offer descrip-
tions of anomalies.

However, while they can capture the primary anomalies
when multiple anomalies exist within the data, they struggle
to detect less prominent anomalies. This issue stems from the
fact that the CLIP7) is used in existing VLMs. CLIP7) is a
model that can extract image features aligned with languages.
It captures only the most salient features when attempting to
recognize multiple features within an image, leading to less
prominent features being ignored8). Therefore, to effectively
represent each anomaly, it is necessary to be able to extract
features that are specific to the corresponding anomaly region.

Recently, Sun et al.9) has addressed this issue by utilizing
masks in addition to CLIP7), allowing it to extract features
corresponding to masked regions. This approach mitigated the
problem of CLIP’s inability to effectively extract features from
specific areas and improved image recognition performance
compared to the original CLIP.

However, the AlphaCLIP training datasets do not include
industrial anomaly datasets, resulting in poor performance on
industrial anomaly detection tasks. Moreover, because the
training dataset of AlphaCLIP only includes data referring to
objects themselves, AlphaCLIP lacks the ability to identify
abnormal regions within objects, which is essential for IAD.

In this study, we aim to build a model with referring capa-
bilities that can provide detailed descriptions for each anomaly
in IAD. Specifically, we construct a multi-modal training IAD
dataset including input images, masks, and the correspond-
ing text description. We separated masks into each anomaly
region because the masks are filled in the entire anomaly re-
gion. With our multi-modal IAD dataset, we enhance the
AlphaCLIP referring capability and inject industrial anomaly
knowledge into it.

To validate our method, we create a test multi-modal IAD

dataset from MVTec10) with the same process in the training
dataset. The evaluation of this test dataset shows that our
model can provide the anomaly descriptions with higher ac-
curacy than the original AlphaCLIP model even if there are
multiple anomalies.
2. Related work
2.1 Zero-shot anomaly detection

Zero-Shot Anomaly Detection (ZSAD) aims to detect
anomalies without training on anomaly data. Feature
embedding-based methods1), 2) extract features from normal
samples using pre-trained models, with Patchcore2) using
core-set sub-sampling for efficiency and SimpleNet1) address-
ing domain biases through feature mapping. Reconstruction-
based methods11) ∼14) identify anomalies by reconstructing
normal images and comparing them to originals pixel-by-
pixel. While some approaches require separate models per
class1), 2), 11), 14), others15), 16) use unified models for multi-
class detection. Additionally, Hu et al.17) and Zhang, Xu, and
Zhou18) use the Latent Diffusion Model (LDM)19) to synthe-
size anomaly data from limited normal samples, which enables
models to train on synthesizing anomaly data in the ZASD set-
ting and results in enhanced detecting capabilities.

Language-guided methods3) leverage pre-trained multi-
modal models such as CLIP7), Region CLIP20), and Image-
bind21) for visual-language integration. WinCLIP3) and April-
GAN22) construct prompts for normal and abnormal sam-
ples, comparing pixel-wise vision-textual features to provide
anomaly scores. AnoVL23) employs Test-Time Adaptation
(TTA) to refine features and enhance anomaly localization.
These models exhibit strong zero-shot or few-shot capabilities
due to the generalization ability of multimodal models.

Recently, AnomalyCLIP4) and AdaCLIP24) showed high
performance on ZSAD with the text prompt adaption. They
made their models that can learn text prompts training on
auxiliary data.

However, although they can detect anomalies with high ac-
curacy, none of these methods can provide descriptions of
anomalies. It makes users difficult to understand detected
anomalies and identify anomaly reasons.
2.2 Vision and language models on IAD

Lately, methods leveraging VLMs have been proposed for
explainable IAD. AnomalyGPT5) designs an LLM-based im-
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Fig. 1 Overview of Our approach. Left) we construct a multi-modal IAD dataset including images, masks, and text descriptions.
We separate the existing anomaly masks so that they refer to each anomaly region, and make descriptions based on the object
name and the class name. Right) we fine-tune the AlphaCLIP model on our Multi-modal IAD dataset to enhance its abilities in
IAD.

age decoder to generate anomaly maps and uses prompt em-
bedding to incorporate domain knowledge into large language
models (LLMs). Myriad6) further utilizes anomaly maps to
identify anomalies in an input image from the existing IAD
models that can output anomaly maps.

However, they struggle to provide descriptions of each
anomaly region respectively. Moreover, they cannot offer de-
scriptions on a designated region by users.

Recent VLMs9), 25), 26) have improved grounding capabili-
ties by referencing objects or regions of interest using coordi-
nates or specialized tokens instead of detailed textual descrip-
tions. However, the application of these VLMs in IAD faces
challenges due to the lack of domain-specific knowledge and
different levels of referring capabilities.

In this study, to solve these limitations, we propose a method
that can provide descriptions of a specific region designated by
users. To do this end, we construct multi-modal IAD datasets
and enhance AlphaCLIP abilities in IAD.
3. Method

We first explain how AlphaCLIP can extract features cor-
responding to an area in Sec. 3.1. Next, we describe the way
that we create multi-modal IAD datasets where there are im-
ages, masks, and class-specific text description corresponding
to the mask area in Sec. 3.2. Lastly, we explain the way to
train AlphaCLIP on the multi-modal training IAD datasets in
Sec.3.3.
3.1 Background: AlphaCLIP

To describe each anomaly in a specific area, we employ
AlphaCLIP AE(·), which can extract image anomaly features
from a designated area using a mask. AlphaCLIP enables a
model to extract the image features for each designated region
by inserting an additional convolution layer along with the
existing RGB convolution layers (denoted as ‘Alpha Conv’ and
‘RGB Conv’ respectively in the right part of Fig 1). With this
extra convolution layer for the alpha channel, AlphaCLIP can
extract the image information E𝐼,𝑖 for each specified anomaly

region from the input image I and the maskM′
𝑖 as follows:

AE(𝐼,M′
𝑖) = E𝐼𝑖 , (1)

where E′𝐼,𝑖 ∈ R𝐷𝐼𝐸 , 1 ≤ 𝑖 ≤ 𝑁 and with 𝐷 𝐼𝐸 is the image
embedding dimension of AlphaCLIP.

The text embedding is obtained using the text encoder TE(·)
in AlphaCLIP. This encoder converts the textual description
T𝑖 into a corresponding embedding representation, expressed
as:

TE(T𝑖) = E𝑇𝑖 , (2)

where E𝑇𝑖 ∈ R𝐷𝑇𝐸 , with 𝐷𝑇𝐸 being the text embedding di-
mension, which is the same as the image embedding dimension
𝐷 𝐼𝐸 .

AlphaCLIP can output the description text𝑇𝑜 corresponding
to the input image I and the mask M′

𝑖 with the following
operation,

𝑇𝑜 = arg max
𝑇𝑗

(
E𝐼𝑖 · E𝑇𝑗

)
. (3)

This operation selects the text description𝑇𝑗 with the highest
similarity score as the output description 𝑇𝑜 corresponding to
the designated region.
3.2 Construction of multi-modal IAD datasets

In a ZASD setting, it is not allowed to train a model
with anomaly data in existing datasets. Therefore, we used
Anomaly-Diffusion17) to synthesize anomaly datasets from
normal images. Anomaly-Diffusion is a segmentation dataset
that contains anomaly images, masks, object names, and object
classes. However, the existing masks cover the entire anomaly
region. We separate the existing masks so that each mask
indicates individual anomaly regions. Specifically, We sepa-
rate the original mask M into 𝑁 individual masks M′

𝑖 using
DBSCAN27). It can be formulated as follows:
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Table 1 The number of each object in the constructed IAD
multi-modal dataset. We create ‘Train’ and ‘Validation’
dataset from the synthesis MVTec dataset17), and ‘Test’ from
the MVTec test dataset10).

Object Train Validation Test

Bottle 1,318 574 67
Grid 3,092 1,337 124
Pill 3,320 1,437 165
Wood 7,861 3,425 156
Leather 1,937 735 95
Carpet 2,284 957 94
Zipper 4,450 1,972 176
Screw 1,224 520 127
Cable 3,733 1,581 125
Metal nut 1,926 843 118
Capsule 1,800 723 111
Hazelnut 1,791 815 91
Tile 1,928 835 86
Transistor 1,711 711 44
Toothbrush 428 200 49

Total 40,803 16,665 1,522

DBSCAN(M) = M𝑠 = (M′
1,M

′
2, . . . ,M

′
𝑁 ), (4)

whereM′
𝑖 ∈ R𝐻×𝑊 , 1 ≤ 𝑖 ≤ 𝑁 .

DBSCAN27) is a clustering algorithm that groups points
that are closely packed together while marking points that lie
alone in low-density regions as outliers.

Next, we create anomaly text descriptions for each mask.
Specifically, we utilize object names and anomaly class names
in existing datasets. Because the original class names were
not easily readable, we utilized GPT-4o28) to make them more
comprehensible. Specifically, we made a more readable text
description with the following prompt format:

Anomaly Image: <Image>
Object name: <Object name>
Anomaly class name: <Class name>
You are given an image along with
an object name and an anomaly class name.
Based on these inputs, generate a natural and concise description
that describes the anomaly occurring with the object.
Make sure the description clearly conveys the relationship
between the object and the anomaly.

Output:

In the text prompt, <Image>, <Object name> and
<Class name> refer to an input image, the object name, and
the class name respectively in the existing dataset.

We constructed multi-modal training and validation datasets
including images, separated masks, and corresponding
text prompts from the MVTec dataset10) and Anomaly-
Diffusion17).

The left side of Fig 1 illustrates real data samples in
our multi-modal IAD datasets from the synthesis MVTec
dataset17). We create a test dataset from the original MVTec10)

dataset with the same process. Tables 1 and 2 indicate the

Table 2 The total mask number of each data in the con-
structed IAD multi-modal dataset.

Number of Masks Train Validation Test

1 19,721 8,461 1,002
2 11,186 4,682 346
3 5,460 2,490 192

4+ 2,436 1,032 88

Total 38,803 16,665 1,628

overall dataset statics including the number of each object and
the total number of masks in a single instance. It indicates that
many instances contain multiple anomalies.
3.3 Training AlphaCLIP on multi-modal IAD

datasets
To train AlphaCLIP, we employ the supervised contrastive

loss29), This loss function is effective when we fine-tune a
CLIP model on small-scale training datasets where there are
many positive and negative samples in a single training batch.
It aligns the image features E𝐼𝑖 and text features E𝑇𝑖 by lever-
aging both positive and negative samples.

The supervised contrastive loss Lsup is defined as:

Lsup = 1
𝑁

∑𝑁
𝑖=1

[
− 1

|𝑃 (𝑖) |
∑

𝑝∈𝑃 (𝑖) log exp(E𝐼,𝑖 ·E𝑇,𝑝/𝜏 )∑
𝑎∈𝐴(𝑖) exp(E𝐼,𝑖 ·E𝑇,𝑎/𝜏 )

]
, (5)

where 𝑃(𝑖) represents the set of indices corresponding to pos-
itive samples for the 𝑖-th data point, 𝐴(𝑖) denotes the set of all
samples excluding 𝑖 itself, 𝜏 is a temperature parameter.

By minimizing this supervised contrastive loss on the multi-
modal IAD datasets, the model can learn to effectively align the
image and text embedding of a designated area with a mask.
It ensures that features corresponding to the same anomaly
description are brought closer in the shared embedding space,
while features from different anomalies are pushed apart.

The right illustration in Fig 1 shows fine-tuning AlphaCLIP
on the multi-modal IAD dataset. This allows AlphaCLIP can
output the text description of a designated anomaly area in
industrial images.
4. Experiments
4.1 Experiment setting

We fine-tuned the original AlphaCLIP’s ViT-L/14@336px
model on the MVTec multi-modal IAD training dataset de-
scribed in Sec 3.2. For the fine-tuning process, it is crucial to
ensure that AlphaCLIP retains its original capabilities while
learning from the IAD training dataset. LoRA30) demon-

Table 3 Hyperparameter values used for training AlphaCLIP
with LoRA.

Hyperparameter Value

LoRA rank (𝑟) 64
LoRA 𝛼 64
Dropout rate 0.1%
Learning rate (Alpha Convolution) 1 × 10−4

Learning rate (RGB Convolution) 1 × 10−6

Weight decay 1 × 10−4
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Fig. 2 Qualitative evaluation between the original Alpha-
CLIP and our model on the multi-modal MVTec test dataset.
The white solid lines in each image refer to the areas used in
the masks.

strated that by training only a small subset of parameters, it
can achieve performance similar to full-parameter fine-tuning.
Moreover, because it does not train the entire parameter, it can
help prevent over-fitting. For these reasons, we determined to
use LoRA for fine-tuning.

Table 3 shows our hyperparameter’s values used in the train-
ing. For LoRA, we set 𝑟 = 64 and 𝛼 = 64, and applied a
dropout rate of 0.1%. During training, we followed the origi-
nal AlphaCLIP training configuration, setting the learning rate
for the Alpha Convolution to 1𝑒−4 and for the RGB Convolu-
tion to 1 × 𝑒−6 individually. We used the AdamW optimizer
with 𝛽 = (0.9, 0.999) and a weight decay of 1 × 𝑒−4.

For data augmentation, we applied random horizontal flips
and random vertical flips. The total batch size was set to 64
for training, and a batch size of 256 was used for evaluation.
All experiments were conducted on two GTX 3080 GPUs.
4.2 Experiment results

Our model can detect an anomaly with a descriptive
prompt on a designated region. Figure 2 illustrates the

Table 4 Accuracy comparison between AlphaCLIP and our
model for each mask number. The ‘Total accuracy’ row shows
the average performance on the entire dataset.

Mask Number
Accuracy (%) ↑

AlphaCLIP Ours

1 17.47 74.15 (+56.68)
2 14.45 66.18 (+51.73)
3 32.29 68.23 (+35.94)
4 16.67 50.00 (+33.33)
5 6.67 46.67 (+40.00)
6 16.67 61.11 (+44.44)
7 0.00 71.43 (+71.43)

Total accuracy 18.37 70.64 (+52.27)

Table 5 Object-wise accuracy comparison between Alpha-
CLIP and our model, with the gap shown next to our model’s
values.

Object
Accuracy (%) ↑

AlphaCLIP Ours

Bottle 0.00 85.07 (+85.07)
Grid 25.81 60.48 (+34.67)
Pill 9.09 60.61 (+51.52)
Wood 41.67 69.87 (+28.20)
Leather 24.21 56.84 (+32.63)
Carpet 0.00 64.89 (+64.89)
Zipper 15.34 71.02 (+55.68)
Screw 18.90 55.91 (+37.01)
Cable 0.00 67.20 (+67.20)
Metal nut 16.10 79.66 (+63.56)
Capsule 18.92 63.96 (+45.04)
Hazelnut 18.68 87.91 (+69.23)
Tile 13.95 94.19 (+80.24)
Transistor 36.36 88.64 (+52.28)
Toothbrush 57.14 100.00 (+42.86)

Total 18.37 70.64 (+52.27)

accuracy of the multi-modal MVTec test dataset per object in
AlphaCLIP and our fine-tuned model. The original Alpha-
CLIP model failed to detect object anomalies and recognize
the kinds of objects due to the lack of knowledge of the MVTec
dataset. On the other hand, our model can identify anomalies
given a mask and an image even if multiple anomalies exist in
an image.

Table 5 indicates the quantitative evaluation per object. The
original AlphaCLIP model totally failed to detect anomalies
on ‘Bottle’, ‘Cable’, and ‘Carpet’ objects, the performances
on others are low. On the other hand, Our fine-tuned model
can detect anomalies on the objects that AlphaCLIP failed. It
can identify anomalies in ‘Toothbrush’ the most. Our model
struggled to detect anomalies on ‘Leather’, and ‘Screw’ be-
cause their anomalies are small and hard to be visually notified.
It performed with much higher accuracy (+50.27%) than the
original AlphaCLIP model. This demonstrated that our model
can identify industrial anomalies with detailed descriptions.

Our model can focus on individual anomalies in mul-
tiple anomalies. Table 4 presents the accuracy of the multi-
modal MVTec test dataset per the total number of the anoma-
lies in data. AlphaCLIP shows lower accuracy on those data
where more anomalies exist, but our model can detect anoma-
lies. This indicates that our model can reliably detect anoma-
lies even in data with numerous anomalies.
5. Conclusion

In this work, we proposed a method that can provide de-
scriptions of a designated anomaly region. To do this end,
we constructed the multi-modal IAD dataset in the MVTec
dataset10) and fine-tuned the AlphaCLIP model on it. In cre-
ating the dataset, we ensured that the masks indicated each
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individual anomaly region, and we used object names and
anomaly class names to create easy-to-understand descriptions
for each anomaly region. We demonstrated that our model can
provide descriptions about a designated anomaly area, and
can consistently perform even in data where there are many
anomalies.

In this study, we only conduct experiments in MVTec
dataset10), due to computational constraints. Adapting our
approach to anomaly detection in other domains, such as the
medical domain31), 32) , is a future work.
References
[1] Z. Liu et al. SimpleNet: A Simple Network for Image

Anomaly Detection and Localization. CVPR. (2023),
pp. 20402–20411.

[2] K. Roth et al. Towards Total Recall in Industrial Anomaly
Detection. CVPR. (2022), pp. 14318–14328.

[3] J. Jeong et al. WinCLIP: Zero-/Few-Shot Anomaly Clas-
sification and Segmentation. CVPR. Vancouver, BC,
Canada: IEEE, (2023), pp. 19606–19616.

[4] Q. Zhou et al. AnomalyCLIP: Object-agnostic Prompt
Learning for Zero-shot Anomaly Detection. (2024). url:
https://arxiv.org/abs/2310.18961.

[5] Z. Gu et al. AnomalyGPT: Detecting Industrial Anoma-
lies Using Large Vision-Language Models. AAAI.
(2023).

[6] Y. Li et al. Myriad: Large Multimodal Model by Ap-
plying Vision Experts for Industrial Anomaly Detection.
(2023). url: http://arxiv.org/abs/2310.18961.

[7] A. Radford et al. Learning transferable visual mod-
els from natural language supervision. ICML. (2021),
pp. 8748–8763.

[8] T. Chen, C. Luo, and L. Li. Intriguing Properties of Con-
trastive Losses. NIPS 34, (2021).

[9] Z. Sun et al. Alpha-CLIP: A CLIP Model Focusing on
Wherever You Want. CVPR, pp. 13019–13029, (2023).

[10] P. Bergmann et al. The MVTec Anomaly Detection
Dataset: A Comprehensive Real-World Dataset for Un-
supervised Anomaly Detection. IJCV 129.4, pp. 1038–
1059, (2021).

[11] H. Yin. LafitE: Latent Diffusion Model with Feature
Editing for Unsupervised Multi-class Anomaly Detec-
tion. (2023). url: http://arxiv.org/abs/2307.08059.

[12] F. Lu et al. Removing Anomalies as Noises for Industrial
Defect Localization. ICCV. (2023), pp. 16166–16175.

[13] H. Zhang et al. DiffusionAD: Norm-guided One-step De-
noising Diffusion for Anomaly Detection. (2023). url:
https://arxiv.org/abs/2310.18961.

[14] X. Zhang et al. Unsupervised Surface Anomaly Detec-
tion with Diffusion Probabilistic Model. ICCV. (2023),
pp. 6759–6768.

[15] X. Yao et al. Focus the Discrepancy: Intra- and Inter-
Correlation Learning for Image Anomaly Detection.
ICCV. IEEE, (2023), pp. 6780–6790.

[16] Z. You et al. A Unified Model for Multi-class Anomaly
Detection. NIPS. Vol. 35. (2022), pp. 4571–4584.

[17] T. Hu et al. AnomalyDiffusion: Few-Shot Anomaly Im-
age Generation with Diffusion Model. AAAI. (2023).

[18] X. Zhang, M. Xu, and X. Zhou. RealNet: A Feature
Selection Network with Realistic Synthetic Anomaly for
Anomaly Detection. (2024).

[19] R. Rombach et al. High-Resolution Image Synthesis
with Latent Diffusion Models. CVPR, pp. 10674–10685,
(2021).

[20] Y. Zhong et al. RegionCLIP: Region-Based Language-
Image Pretraining. CVPR. (2022), pp. 16793–16803.

[21] R. Girdhar et al. ImageBind: One Embedding Space To
Bind Them All. CVPR. (2023), pp. 15180–15190.

[22] X. Chen, Y. Han, and J. Zhang. APRIL-GAN: A Zero-
/Few-Shot Anomaly Classification and Segmentation
Method for CVPR 2023 VAND Workshop Challenge
Tracks 1&2: 1st Place on Zero-shot AD and 4th Place on
Few-shot AD. (2023).

[23] H. Deng et al. Bootstrap Fine-Grained Vision-Language
Alignment for Unified Zero-Shot Anomaly Localization.
(2024). url: https://arxiv.org/abs/2308.15939.

[24] Y. Cao et al. AdaCLIP: Adapting CLIP with Hybrid
Learnable Prompts for Zero-Shot Anomaly Detection.
(2024). url: http://arxiv.org/abs/2407.15795.

[25] Z. Peng et al. Kosmos-2: Grounding Multimodal Large
Language Models to the World. (2023). url: https : / /
arxiv.org/abs/2306.14824.

[26] H. You et al. Ferret: Refer and Ground Anything Any-
where at Any Granularity. (2023). url: https://arxiv.org/
abs/2310.07704.

[27] M. Ester et al. A density-based algorithm for discovering
clusters in large spatial databases with noise. kdd. Vol. 96.
34. (1996), pp. 226–231.

[28] J. Achiam et al. Gpt-4 technical report. arXiv, (2023).
url: https://arxiv.org/abs/2303.08774.

[29] P. Khosla et al. Supervised Contrastive Learning. (2021).
url: https://arxiv.org/abs/2303.08774.

[30] E. J. Hu et al. LoRA: Low-Rank Adaptation of Large
Language Models. ICLR. (2021).

[31] N. C. F. Codella et al. Skin Lesion Analysis toward
Melanoma Detection: A Challenge at the 2017 Interna-
tional Symposium on Biomedical Imaging, Hosted by the
International Skin Imaging Collaboration. ISBI. (2018),
pp. 168–172.

[32] J. Bernal et al. WM-DOVA Maps for Accurate Polyp
Highlighting in Colonoscopy: Validation vs. Saliency
Maps from Physicians. CMIG 43, pp. 99–111, (2015).

- 379 -

https://arxiv.org/abs/2310.18961
http://arxiv.org/abs/2310.18961
http://arxiv.org/abs/2307.08059
https://arxiv.org/abs/2310.18961
https://arxiv.org/abs/2308.15939
http://arxiv.org/abs/2407.15795
https://arxiv.org/abs/2306.14824
https://arxiv.org/abs/2306.14824
https://arxiv.org/abs/2310.07704
https://arxiv.org/abs/2310.07704
https://arxiv.org/abs/2303.08774
https://arxiv.org/abs/2303.08774

	Introduction
	Related work
	Zero-shot anomaly detection
	Vision and language models on IAD

	Method
	Background: AlphaCLIP
	Construction of multi-modal IAD datasets
	Training AlphaCLIP on multi-modal IAD datasets

	Experiments
	Experiment setting
	Experiment results

	Conclusion

