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I. INTRODUCTION

Underwater sensing is a challenging process, while optical cameras can
be used to detect underwater environments, their resolution is significantly
limited by dark and turbid conditions. In contrast, acoustic cameras, also
known as forward-looking sonar (FLS), can capture high-resolution images
even in murky water.

Fiducial markers play a vital role in underwater robot navigation,
serving as reference points for precise localization and mapping. Several
acoustic fiducial marker systems have been proposed. Wang et al.
developed ACMarker, a simple designed fiducial marker system for sonar
imaging, enabling pose estimation in underwater environments, using
image processing techniques such as edge detection [1]. On the other
hand, Norman et al.. developed AcTag for automatic marker family
generation [2]. However, in real-world images test, the True Positive
Rate (TPR) was found to be below 50%, limiting reliable detection in
real-world underwater conditions. These limitations arises from multiple
factors, including detection algorithm, FLS imaging principle, and noise
in environment. DeepTag, a framework for fiducial marker detection in
optical cameras [3], achieves high robustness in detection and pose accuracy.
However, its application in underwater environments is limited due to the
inherent differences between optical and acoustic imaging.

In this marker system, we proposed: 1) an unique fiducial marker
design features 20 key points (16 central points and 4 corner points). 2)
a recognition flow for acoustic markers in FLS images. 3) a two-stage
curriculum learning strategy that incorporates inherent FLS characteristics,
such as secondary reflections and cross-talk.

II. METHOD

A. Marker design

Acoustic images are created by analyzing backscattered intensity, whose
quality is influenced by the properties of the object material. For example,
concrete diffusely scatters sound waves, while stainless steel regularly
reflects them, offering distinct contrasts in sonar images, as shown in
Figure 1. The proposed marker measures 350 mm x 350 m x 2 mm
(length x width x thickness) and is composed of a grid of large and small
circular holes. The diameter of each large circle is 60 mm, while the
diameter of the small circles in the four corners is 20 mm. The distance
between adjacent large circles is 22 mm, and the distance from the small
circles to the edges of the marker is 7 mm. The design allows for some
positional tolerance in the placement of the circles, as the recognizability
of the pattern (e.g., detecting the arrangement of large circles) serves as the
key feature for marker identification. The bottom layer is made of concrete,
offering a diffusely scattering base, while the top layer is constructed from
stainless steel perforated with numerous circular holes, which are easily
excavated to meet practical fabrication requirements, to create consistent
reflective patterns. The marker is secured using nails, which can be placed
at any location capable of fixing the marker firmly. This provides practical
adaptability during underwater deployment. Therefore, this design is also
suitable for long-term use in underwater structures.

B. Learning framework

First, a two-stage curriculum learning is designed to detect the marker’s
position, which gradually increases the complexity of training data,
allowing the model to adapt to complex scenarios. After obtaining marker
position information and using the ID information, the network is further
trained for ID recognition. To predict bounding box (bbox) and IDs of
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Fig. 2. Stage 1 for single marker detection. (a) a labeled image from
the training dataset, where the marker’s region is calculated. (b) training
result including the predicted bounding box and confidence score for the
marker. (c) test result on real-world images for marker detection.

markers, You Only Look Once (YOLO) [4], a one-stage object detection
framework that identifies object class categories and bounding boxes in a
single forward pass, is applied.

Figure 2 illustrates the Stage 1 learning and validation process, using
raw (7, 0) sonar images. Each training image contains only one marker
and low Rayleigh noise. The FLS projection model maps objects to
the (7, 0) plane, resulting in the loss of ¢ information. To simulate this
imaging principle, the camera coordinates and marker coordinates from
the simulator are used to calculate the actual (r, #) values of the markers
in the sonar images. The four corner points defining the region of interest
(ROI) are transformed from the simulator’s global coordinate system to
the camera’s local coordinate system through a coordinate transformation,
taking into account the camera’s position and orientation.

Figure 3 illustrates the learning process in Stage 2, incorporating real-
world acoustic data augmented with multiple markers. Inherent FLS effects,
such as secondary reflections and cross talk, are incorporated to simulate
real-world underwater conditions. Our marker has a thickness of 2 mm,
which contributes to secondary reflections, adding bright edges around the
circular patterns of the marker. Cross talk arises because the sonar system
emits ultrasonic beams simultaneously, which can interfere with each other
when their reflected signals overlap or interact. The FLS images generated
by the simulator are in (r, ) format, which causes square markers to
appear distorted. To address this, the (r,0) images are first transformed

into (z,y) images. The transformed fan-shaped images are then used for
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Fig. 3. Stage 2 for mutiple marker detection. The raw sonar images generated using Blender are first cropped and transformed into fan-shaped images.

For learning, bounding box (bbox) labels is automatically calculated by the positional information from Blender. For testing, fan-shaped images

converted from real-world data are used, producing predicted bboxes accompanied by confidence scores, indicating the reliability of the detection.
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Fig. 4. ID detection process. (a) an image with predicted bounding boxes
from Stage 2. (b) the cropped patch labeled with the corresponding ID
information. (c) the model’s prediction on training dataset.

training and testing.

Figure 4 illustrates the ID learning process. First, the bounding box
information predicted in Stage 2 is used to crop the fan-shaped image
containing multiple markers into patches, each containing a single marker.
These patches are then assigned predefined IDs as classification targets.
Finally, the model learns to classify the IDs based on these labeled patches,
enabling accurate identification of individual markers.

III. EXPERIMENT

Simulator data generation was conducted using Blender 3.6.11, where
markers were placed on two rectangular blocks to simulate their placement
on underwater concrete structures. Variations were introduced in marker
positions, material reflectivity, camera angles, noise levels, and effects
such as secondary reflections to replicate real-world underwater conditions.
These adjustments were tailored to different curriculum learning stages.

We employed the YOLOv11n model to ensure high efficiency and
accuracy. For the original (r, ) images, partially visible markers often
result in out-of-bound errors, preventing effective learning. By transforming
(r, 6) images into (z,y) images, the resulting transformed images include
padded black edges, allowing all partially visible markers to be correctly
labeled and included in the training process.

The results are summarized in Table I, demonstrating the performance
metrics across different stages of the curriculum learning stages. For Stage
1, 8,000 images were used for training. The model achieved a mAP@0.5
of 0.995 and an F1 score of 1 at a confidence threshold of 0.856 in the
training set, demonstrating the ability to identify almost all positive cases
with high accuracy. However, on real-world FLS images from water tank
experiments, the Stage 1 model exhibited limitations, including incorrect
bounding boxes that did not align with the markers, highlighting the need
for further improvements.

For Stage 2, the model was trained on a smaller dataset of 1,000 images
and achieved a mAP@0.5 of 0.995 with an F1 score of 1 at a confidence
threshold of 0.000. Using Stage 2 alone (without Stage 1), the system
achieved a precision of 0.9889 and a recall of 0.9046. When incorporating

TABLE I
PERFORMANCE METRICS FOR DIFFERENT STAGES

Stage 1 Stage 2
w/o Stage 1 | with Stage 1
True Positives T 256 2133 2250
False Positives | 14 24 0
Precision 1 0.948 0.989 1.000
Recall 1 0.109 0.905 0.954
Confidence (Avg.) T 0.48 0.89 0.89

Stage 1 learning into Stage 2, the model further improved its performance,
achieving a precision of 1.0000 and a recall of 0.9542. Furthermore, the
system demonstrated a processing speed of 0.7 ms for preprocessing, 3.4
ms for inference, and 0.7 ms for postprocessing per image, making it
suitable for real-time detection applications.

In addition to marker detection, the ID detection process was designed
to recognize six unique marker patterns (IDs) from sonar images. Using
the predicted bounding boxes from Stage 2, the markers were cropped
into patch images and labeled with their corresponding IDs to create the
training dataset. The classification model trained on these labeled patches
achieved a mAP@0.5 of 0.995 across all six classes in the training dataset,

ensuring robust and accurate ID recognition.

IV. CONCLUSION

We proposed an acoustic camera marker family featuring numerous key
points to enhance recognition robustness. A comprehensive acoustics
simulator database was constructed, consisting of sonar images and
corresponding labels. The Curriculum learning strategy employed in
this study improved the model’s robustness, effectively bridging the gap
between synthetic and real-world datas. For future work, we aim to extend
this system by implementing the acoustic n-point method for real-time
6DoF pose estimation.
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